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摘　 要:
 

传感器定位是实现自动驾驶的关键技术,但单一传感器定位系统由于传感器自身缺陷在面对复杂环境下存在定位精

度不高,算法失灵等问题。 相对而言,多传感器定位系统融合则可以弥补单一传感器缺陷,提高定位精度。 为了提高系统定

位精度,本文设计了一种基于自适应噪声的无迹卡尔曼滤波多定位系统融合算法。 此算法选用 CTRA(Constant
 

Turn
 

Rate
 

and
 

Acceleration)模型作为运动模型,根据时间序列法融合多种传感器构建观测模型,并在滤波算法中加入自适应噪声来适应复

杂环境。 实验表明,无自适应噪声的融合定位系统精度比单一激光和视觉定位系统分别提高 6. 8%和 21. 1%,而在有自适应

噪声的情况下,进一步提高约 1. 5%。 对比单一传感器定位系统,该算法有效提高了系统定位精度。
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Abstract:
 

Sensor
 

positioning
 

is
 

crucial
 

for
 

achieving
 

autonomous
 

driving.
 

However,
 

a
 

single
 

sensor
 

positioning
 

system
 

may
 

suffer
 

from
 

low
 

accuracy
 

and
 

algorithm
 

failure
 

in
 

complex
 

environments
 

due
 

to
 

sensor
 

defects.
 

On
 

the
 

other
 

hand,
 

a
 

multi - sensor
 

positioning
 

system
 

can
 

compensate
 

for
 

these
 

defects
 

and
 

improve
 

accuracy.
 

To
 

enhance
 

the
 

system's
 

positioning
 

accuracy,
 

this
 

paper
 

presents
 

an
 

Unscented
 

Kalman
 

Filter
 

fusion
 

algorithm
 

that
 

employs
 

adaptive
 

noise.
 

The
 

algorithm
 

utilises
 

the
 

CTRA
 

(Constant
 

Turn
 

Rate
 

and
 

Acceleration)
 

model
 

as
 

the
 

motion
 

model,
 

fuses
 

multiple
 

sensors
 

to
 

construct
 

an
 

observation
 

model
 

using
 

the
 

time
 

series
 

method,
 

and
 

incorporates
 

adaptive
 

noise
 

in
 

the
 

filtering
 

algorithm
 

to
 

accommodate
 

complex
 

environments.
 

The
 

experiments
 

demonstrate
 

that
 

the
 

accuracy
 

of
 

the
 

fused
 

localization
 

system
 

without
 

adaptive
 

noise
 

improves
 

by
 

6. 8%
 

and
 

21. 1%
 

over
 

the
 

single
 

laser
 

and
 

visual
 

localisation
 

systems,
 

respectively.
 

Additionally,
 

the
 

accuracy
 

further
 

improves
 

by
 

approximately
 

1. 5%
 

in
 

the
 

presence
 

of
 

adaptive
 

noise.
 

The
 

algorithm
 

effectively
 

enhances
 

the
 

system
 

positioning
 

accuracy
 

compared
 

to
 

the
 

single
 

sensor
 

positioning
 

system.
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0　 引　 言

近年来,随着机器人技术的不断发展,即时定位

与地 图 构 建 技 术 ( Simultaneous
 

Localization
 

and
 

Mapping,
 

SLAM)已经成为研发全自主移动机器人

的关键[1] 。 移动机器人依靠自身的传感器获取环

境信息,实时建立地图,从而实现精确定位。 目前,
移动小车上通用的传感器有激光雷达和视觉相

机[2] 。 因此,基于激光的 SLAM 系统[3] 和基于视觉

的 SLAM 系统[4]也随即成为了领域热点研究课题。
激光雷达的优点是可在 1

 

s 内获取大量的位置

点信息(称为点云),并根据这些信息进行地图建

模,缺点是在长直环境下定位精度会下降,并无法获

得载体速度信息[5] 。 激光雷达分为单线和多线两

种[6] ,单线雷达一般应用在平面运动场景,多线雷

达应用在三维运动场景。 单线雷达构建二维地图的

SLAM 算法称为 2D
 

lidar
 

SLAM,包括 GMapping[7] 、
Hector[8] 、Karto[9] 和 Cartographer[10] 等算法。 视觉



SLAM 可以分为特征点法和直接法[11] 。 其中,特征

点法是根据提取、匹配特征点来估计相机运动,优化

的是重投影误差,常见的开源方法有 ORB-SLAM 系

列等[12] 。 直接法具有速度快、可以省去计算特征点

和描述子时间等优点。 但由于该方法假设了灰度不

变,所以易受光照变化影响定位。
可见,激光 SLAM 和视觉 SLAM 各自存在优点

和不足,因此激光和视觉的融合方法应运而生[13] ,
激光和视觉的融合方式可以分为紧耦合和松耦合两

种。 其中,紧耦合是指将多传感器获得的数据置于

一个优化问题中,计算出小车的最优位姿。 松耦合

是指多个传感器系统通过各自观测信息得到的位姿

结果,再次通过滤波的算法进行优化。 由于松耦合

具有可扩展性强、计算效率快、提高系统鲁棒性等优

点,因此基于卡尔曼滤波器的松耦合方案具有较好

的实用性。 2022 年,姜文飞[14] 提出了一种融合视

觉位姿和激光位姿的 SLAM 松耦合系统框架,通过

一种基于过去因子的改进扩展卡尔曼滤波实现相机

数据和 2D 激光雷达传感器数据的松耦合融合机

制。 2022 年,马振强[15] 提出一种基于雷达惯导和

视觉松耦合的算法框架,采用误差状态卡尔曼滤波

对激光传感器的局部地图匹配的残差项和视觉传感

器的重投影误差进行位姿融合,以激光传感器周期

为基准,通过插值计算将激光帧和视觉帧的时间戳

对齐。 无迹卡尔曼滤波( UKF)
 [16] 是著名的非线性

滤波方法,相较于扩展卡尔曼滤波(EKF) [17] 通过泰

勒展开将非线性模型进行线性化,UKF 通过无迹变

换的方法,构造 Sigma 点集,实现对非线性函数预测

和更新,无需再计算大量的雅克比矩阵。
在噪声处理方面,2016 年,戴卿等学者[18] 提出

一种快速 UKF 算法,将低成本联捷惯导和 GPS 松

耦合得到系统状态方程,针对噪声的不确定和协方

差矩阵的高维计算量,结合最大后验估计和矩阵奇

异值分解来改进 UKF 噪声,但是由于 SVD 分解的

不唯一性,有些情况下的噪声无法得到良好改善。
2018 年,段珂[19] 在 BDS、GPS 和 GLONASS 三系统

时空统一的基础上构建多系统定位模型,将定位过

程中的测量噪声和过程噪声建模以削弱误差对定位

精度的影响,提出采用了蚁群算法优化噪声的 UKF
算法来定位小车位姿,但蚁群算法计算复杂度高,往
往会花费大量时间,且容易陷入局部最优解。 2023
年,杨秀建等学者[20]提出对 UWB、IMU 和里程计编

码器信息的多传感器融合定位方法,通过遗忘因子

来减小误差协方差矩阵、从而改变噪声,再加入渐消

因子抑制 UWB 异常值对滤波估计的影响,实现对

传统
 

UKF
 

算法的改进,但论文选用的 Sage-Husa 滤

波器在对高维系统噪声的特性统计的修正效果较

差,无法实现良好的自适应效果。 目前,对于噪声的

研究仍然没能将消除非线性影响与减小计算量实现

高效结合。
考虑到实验室小车同时具备激光传感器和视觉

传感器,以及现有成熟的基于激光的 GMapping 和基

于视觉的 ORB-SLAM2 技术的各自优缺点,本论文

提出双定位系统的融合方案。 论文采用基于时间顺

序的 UKF 松耦合算法方案,在 UKF 预测运算时,使
用 CTRA(Constant

 

Turn
 

Rate
 

and
 

Acceleration)运动

模型作为预测模型,使用 GMapping 和
 

ORB-SLAM2
的数据作为观测值,基于时间顺序意味着只要有观

测数据产生,就对预测值进行修正,提高了系统的可

靠性。 该方法消除了通过线性插值法产生的数据误

差,缓解了大量数据涌入造成的算力拥堵,其缺点是

可能带来不同定位系统交互校正带来的数据抖动。
为了减少真实环境下噪声的无规律性影响,构建了

基于极大后验概率的噪声估计器,既降低了计算的

复杂程度,避免了 SVD 分解方法的不稳定性,还进

一步提高了系统的定位精度。

1　 传感器定位系统

论文搭建的移动机器人实验平台如图 1 所示。
该移动机器人搭载型号为 sick-TIM571 的 2D 激光

雷达和型号为 Realsense
 

D435 的深度相机作为传感

器。 移动实验平台上搭载了 9. 46
 

kg 的柔性机械臂

结构,系统的整体重心位于平台的上表面。 在运动

中,由于机械臂的晃动和惯性的影响,会影响小车的

运动轨迹的定位精度。 通过融合算法可以有效地提

高系统负载条件下的定位精度。

图 1　 移动机器人

Fig.
 

1　 Mobile
 

robot
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1. 1　 基于激光的 GMapping 定位原理

SLAM 的本质是一个状态估计问题,因此可以

将 SLAM 问题转化为求解后验概率的问题。 本文选

用的激光定位系统为 GMapping[7] ,这是基于粒子滤

波的定位方法,采用里程计运动模型更新粒子位姿。
期间引入了 1 次平移噪声和 2 次旋转噪声,导致粒

子分布又扁又宽,而激光雷达数据没有累积误差且

精度高,因此基于激光雷达数据进行地图匹配,可以

改善粒子分布范围。 根据计算采样粒子群粒子的最

大后验概率,实现定位的功能,其定位原理如图 2 所

示。

极大似然估计获取局部极值

激光测量更新地图信息

里程计预测模型更新位姿

初始化粒子分布

构建改进建议分布

计算粒子后验概率和权重

更新小车位姿

图 2　 GMapping 定位原理

Fig.
 

2　 GMapping
 

positioning
 

principle

　 　 本文中通过 GMapping 程序可以得到小车运动

时三轴位移量 xl,yl,zl 和四元数 ql0,ql1,ql2,ql3, 经过

四元数转欧拉角公式计算得到小车偏航角 φl:

φl = arctan
2 2ql0ql3 + ql1ql2( )

1 - 2 q2
l2 + q2

l3( )
(1)

　 　 研 究 可 知, xl,yl,φl 和 时 间 t 均 为 基 于

GMapping 的观测模型变量。
雷达传感器由于在长直走廊环境或周围障碍物

反射效果差的情况下,无法提供足够的测量结果,所
以导致系统定位误差大,需要融合其他传感器定位

数据来提高定位精度。
1. 2　 基于视觉的 ORB-SLAM2 定位原理

本文所选的视觉定位系统为 ORB-SLAM2[12] ,
该算法支持多种类型相机(单目、双目和 RGB-D 相

机),适用性强,具有回环检测功能,提高了算法的

鲁棒性。 ORB-SLAM2 程序通过相邻两关键帧之间

的位姿变换,迭代求解出小车的当前位姿,如图 3 所

示。

ICP优化重投影误差计算Rt

EPNP计算特征点相机坐标

选择相邻两关键帧

回环检测消除累计误差

累计迭代获得小车位姿

图 3　 ORB-SLAM2 定位原理

Fig.
 

3　 ORB-SLAM2
 

positioning
 

principle

　 　 在实验中,ORB -SLAM2 获得的观测数据有小

车关键帧与前一时刻的位姿变换 xv,yv,zv 与四元数

qv0,qv1,qv2,qv3, 经过式(1)得到小车偏航角 φv。
由于算法的局限性,视觉传感器在场景变化较

快时、例如转弯等容易丢失关键帧,无法准确识别特

征点进行匹配,导致定位精度下降,故可以选择融合

其他传感器系统来提升数据精度。

2　 基于 UKF 的双定位系统融合

为了提高定位精度,本文采用 UKF 算法将激

光、视觉定位的位姿信息进行融合。 UKF 是一种通

过无迹变化来捕捉非线性系统状态变化的滤波算

法。 与传统的卡尔曼滤波相比,UKF 能够更好地处

理非线性系统,准确估计非线性系统的状态变量。
与粒子滤波[21]等其他非线性滤波方法相比,UKF 具

有较低的计算复杂度。
2. 1　 预测模型

在估计小车运动位姿时,需要建立对应的运动

学模型来获取小车的预测位姿。 本文实验中的移动

机器人可以实现匀速转弯和匀变速直线运动,所以

选择 CTRA[22]
 

模型作为实验中的运动模型。
在 CRTA 模型中,目标的状态量为:

x =[x,
 

y,
 

v,
 

a,
 

φ,
 

ω] T (2)
　 　 其中, x,y 表示小车在世界坐标系上的位置; v
表示小车的速度; a 表示小车的加速度; φ 表示世界

坐标系下的航向角; ω 表示小车运动的角速度。
系统的过程噪声为 q, 可以表示为:

q =[a·,ω·] T (3)
　 　 其中, a· 表示小车的加加速度, ω· 表示小车的角

加速度。
假设过程噪声 q 是符合零均值的高斯白噪声,
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其协方差矩阵 Q
 [23] 的定义公式如下:

Q = E{qqT} =
σa·

2 　 　 σω·σa·

σa·σω·　
 

σω·
2

é

ë

ê
ê

ù

û

ú
ú

(4)

　 　 其中, E{·} 表示随机变量的期望值; σ a·
2 和

σω·
2 分别表示 a· 和 ω· 的方差。

将噪声向量添加进状态向量内,增广后的向量

称为 x′: 其数学表达式可写为:
x′ =[x,

 

y,
 

v,
 

a,
 

φ,
 

ω,
 

a·,
 

ω·] T (5)
　 　 u′

k 是由于 q 引起的系统的过程噪声,其表达式

为:

u′
k

T = 1
6
a·kΔt3cos

 

φk
1
6
a·kΔt3sin

 

φk
1
2
a·kΔt2 a·kΔt 1

2
ω·kΔt2 ω·kΔt 0 0é

ë
êê

ù

û
úú (6)

　 　 得到运动方程[22] :
x′

k+1 =x′
k + Δtx·′

k + u′
k (7)

2. 2　 观测模型

本文观测模型包含激光、视觉定位系统模型。
观测方程可以描述为:

Zk = H(x′
k) +rk (8)

　 　 其中, rk 表示零均值的高斯白噪声,其协方差

矩阵为 Rk。
激光和视觉的观测模型分别为[24] :

ZT
kl = xl yl φl[ ] ,　 ZT

kv = xv yv[ ] (9)
　 　 其中, xl yl φ l[ ] 分别表示激光雷达测量的

小车在世界坐标系上的位置和航向角, xv yv[ ] 表

示视觉传感器测量的小车在世界坐标系上的位置。
在卡尔曼滤波算法中,通过运动学方程来构建预测

模型,对于下一步状态预测及输出预测,再构建观测

模型,将预测的状态与预测的观测状态通过卡尔曼

增益相结合。
2. 3　 融合定位算法

本文的融合算法以 UKF 算法为框架,通过融合

两传感器定位系统实现小车的高精度定位。

(1)计算小车先验位姿 x̂k 和协方差 P̂k, 公式具

体如下:

x̂k = xk-1, P̂k = Pk-1 (10)

　 　 其中, xk-1 和 Pk-1 分别表示上一时刻滤波输出

的小车位姿和相对应的协方差矩阵。
(2)对预测方程 x′

k 进行 UT 变换得到 Sigma 点

集 Xk
[25] :

Xk| i =x′
i,　 　 　 　

 

　
 

　
 

　 i = 0

Xk| i = x′0 +( (λ + na)Pk-1 )i,
 

i = 1,2,…,na
Xk| i = x′0 -( (λ + na)Pk-1 )i,

 

i = na + 1,na + 2,…,2na

ì

î

í

ï
ï

ï
ï

(11)
其中, na 表示状态量的维度,本文中为 8; Xk 表

示一个 8 × 17 的矩阵;下标 i 表示矩阵的第 i 列;

( (λ + na)Pk-1 ) i 表示扩充矩阵维度构建 Sigma
点集; λ 表示一个缩放比例参数,用来降低总的预

测误差[25] ,定义公式为:
λ = 3 - na (12)

　 　 该方法相较于一般粒子滤波,在保持精度提高

的同时,减少了计算量。

(3)预测小车状态 x- k 与协方差 P
-

k
[25] 。 计算上

一步得到预测状态的 Sigma 点集所对应的权重 wm
i ,

用到的公式为:

wm
i = λ

λ + na
,

 

　
  

i = 0

wm
i = 1

2(λ + na)
,i = 1,2,…,2na

ì

î

í

ï
ïï

ï
ï

(13)

　 　 则预测小车的状态 x- k 和协方差 P
-

k 为:

x- k = ∑
2na

i = 0
wm

i Xk| i,
   

P
-

k = ∑
2na

i = 0
wc

i Xk| i - x- k( ) (Xk| i - x- k)T

(14)
这里协方差权重 wc

i 表达式如下:

　
wc

i =
λ

λ + na

+ 1 - α2 + β,
  

i = 0

wc
i =

1
2(λ + na)

,　 　
 

　 　 i = 1,2,…,2na

ì

î

í

ï
ïï

ï
ï

(15)

　 　 其中, α 取 1,目的是控制采样点的分布状态。
对于高斯分布, β = 2 最优[25] ,这样取值可以合并方

程中高阶项的误差,把高阶项影响包括在内。
(4) 计算观测方程 z-k 与协方差 Sk。 根据式

(11)、式(13)更新观测状态的 Sigma 点集:

z-k = ∑
2na

i = 0
wm

i Zk| i (16)

　 　 根据式(15)权重表达更新协方差 Sk:

Sk = ∑
2na

i = 0
wc

i(Zk| i - z-k)(Zk| i - z-k) T + Rk (17)

　 　 (5)状态更新。 首先计算卡尔曼增益 Kk, 用来

表示每次融合数据后不确定性的变化程度[26] ,推得
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的公式为:
Kk = TkSk

-1 (18)
　 　 其中, Tk 表示互相关系数,会根据 Sigma 点和

预测值之间的差来平衡卡尔曼增益:

Tk = ∑
2na

i = 0
wc

i(Xk| i - x- k)(Zk| i - z-k) T (19)

　 　 则当前时刻的小车状态 xk 和协方差矩阵 Pk 更

新为:

　 xk = x- k + Kk(zk - z-k),
 

　 Pk = P
-

k - KkSkKk
T

(20)
其中, zk 表示当前时刻传感器的实际测量值。
综上,通过算法将两定位系统数据实现了融合。

2. 4　 融合定位方案

图 4 选取了在 80
 

s 到 100
 

s 内两定位系统输出

数据的时刻表,可以发现激光定位系统和视觉定位

系统的定位数据传输周期并不相同。 激光定位系统

有固定的输出周期,而视觉定位系统因为关键帧选

取的无固定周期性,导致输出数据周期不固定。 通

过时间序列法可以弥补空缺时间内缺少的数据,有
效提高算法效率,实现融合算法定位精度的提升。

视觉
激光

80 82 84 86 88 90 92 94 96 98 100
t/s

偏
移

量

图 4　 时间周期对比图

Fig.
 

4　 Comparison
 

chart
 

for
 

the
 

time
 

period

　 　 本文所提的融合定位系统方案原理如图 5 所

示。 前文给出 2 个观测方程,通过时间序列法[27] 依

次将式(8)、式(9)得到的定位系统数据输入到 UKF
滤波器中,更新小车位姿。 方案实现步骤具体如下:

(1)预测模型更新。
(2)对预测方程进行 UT 变换得到 Sigma 点集

和协方差矩阵。
(3)依据时间序列法选取观测模型,将运动模

型更新结果输入到观测模型中。
(4)对观测方程进行 UT 变换得到 Sigma 点集

和协方差矩阵。

xk=∑
i=0

2na

wi
mXk|i

Pk=∑i=0
2na

wi
c(Xk|i-xk)(Xk|i-xk)

T

-

-

CTRV运动模块
xk

′=f(x′
k-1,qk-1)

xk-1

qk-1 ①

②

③

④

⑤

⑥

⑦

xk
′

预测

UT变换

⑧

Tk=∑
i=0

2na

wi
c(Xk|i-xk)(Zk|i-zk)

T

Kk=TkSk
-1

- -

xk=xk+Kk(zk-zk)
Pk=Pk-KkSkKk

T

qk xkPk

- -
-

rk

Zk

Zk=H(x′k)+rk

观测模型
(雷达、相机)

zk=∑
i=0

2na

wi
mZk|i

Sk=∑
i=0

2na

wi
c(Zk|i-zk)(Zk|i-zk)

T+Rk
- -

rk
Rk

激光雷达
[xlylφl]

相机
[xvyv]

更新

Gmapping ORB-SLAM2

-

-

图 5　 融合定位流程图

Fig.
 

5　 Flowchart
 

of
 

fusion
 

positioning
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　 　 (5)求得卡尔曼增益。
(6)带入定位系统真值计算小车位姿与协方差

矩阵。
(7)将求得的位姿与协方差带入下一时刻循环

流程。

3　 自适应噪声估计器

传统的 UKF 算法中,将噪声的协方差矩阵设计

为定值。 为了使得融合结果更贴近真值,论文基于

极大后验原理构建误差损失函数,加入自适应权值

对未知时变的噪声统计进行实时估计和修正。
首先,构造误差损失函数 J[28] :

J = p(Q,R,Xk | Zk) (21)
　 　 其物理含义为当 Zk = (z1,…,zk) 为已知概率、
在 Q 和 R 未知时, Xk = (x0,…,xk) 最大可能的概

率。
根据贝叶斯公式可得[29] :

　 J =
p(Zk,Q,R,Xk)

p(Zk)
=

　 　 　
p(Zk | Q,R,Xk)p(Xk | Q,R)p(Q,R)

p(Zk)
(22)

由于 p(Zk) 已知,同最优化问题无关,可以改

成归一化常数,将上述问题近似于[30] :
　 J ∝ p(Zk | Q,R,Xk)p(Xk | Q,R)p(Q,R) (23)
　 　 其中, p(Q,R) 与先验概率有关,作为已知事

实,也可以视作常值。
由于非线性系统中,在本文中噪声均假设为互不

相关的零均值高斯正态分布,有如下计算公式[31] :

p(Xk | Q,R) = ∏
k

j = 0
p(x j | Q,R) (24)

　 　 由隐马尔科夫链式法则可以将上式化简为[32] :
　 p(Xk | Q,R)= p(x0)p(x1 | x0,Q)…p(xk | xk-1,Q)=

p(x0)∏
k

j = 1
p(xj | xj-1,Q) (25)

根据多元高斯分布概率密度公式可得:

p(x0)∏
k

j = 1
p(xj | xj -1,Q) =

1

( 2π )
n

| p0 |
exp( - 1

2
‖x0 -x̂0‖2

p0
-1) ×

∏
k

j = 1

1

( 2π )
n

| Q |
e

( - 1
2 ‖∑

2na

i = 0
wci(Xj| i(7:8,:) -x-j(7:8,:))‖2

Q-1)
=

C1
1

|p0 | ( | Q | )
ke

(- 1
2 [‖x0-x̂0‖

2
p0
-1+∑

k

j =1
‖∑

2na

i =0
wci(Xj| i(7:8,:)-x-j(7:8,:))‖2

Q-1])

(26)

　 　 其中, x̂0 表示初始时刻的均值; n 表示系统状

态维数; C1 = 1 / (2π) n(k+1) / 2 为常数; | A | 表示 A 的

行列式; ‖μ‖2
A =μ TAμ 表示二次型。 引入 x(7:

8,:) 表示该矩阵的第 7 和 8 行组成一个新矩阵,是
状态量的噪声。 和文献[28]相比,加强了计算的非

线性性,在无迹变化中让噪声变量参与其中。
 

已知测量值为 Zk = (z1,…,zk), 由于噪声是互

不相关的零均值高斯正态分布,类似式(26)化简得:

p(Zk | Q,R,Xk) = ∏
k

j = 0
p(Z j | R,X j) =

　 　 　 C2
1

( | R | )
ke

( - 1
2 ∑

k

j = 1
‖z j-h(x j -1) -r j‖

2
R -1)

(27)

其中, l 表示测量维度, C2 = 1 /(2π) lk / 2 为常数。
将式(26)、式(27)带入到式(23)可得:

J ∝ p(Zk | Q,R,Xk)p(Xk | Q,R)p(Q,R) =

　 C3
1

( | Q | )
k
( | R | )

k·

　 e
( - 1

2 ∑
k

j = 1
‖∑

2na

i = 0
wc
i(X j| i(7:8,:) - x

-
j(7:8,:))‖2

Q -1+∑
k

j = 1
‖z j-h(x j -1) -r j‖

2
R -1)

(28)
其中,

　 C3 = C1C2
1

| p0 |
p(Q,R) × e

( - 1
2 ‖x0-x̂0‖2

po
-1)

(29)

对公式左右同时取对数得:

　 ln
 

J = - k
2

ln | Q | - k
2

ln | R | -

1
2 ∑

k

j = 1
‖∑

2na

i = 0
wc

i(X j| i(7:8,:) -

x- j(7:8,:))‖2
Q -1 - 1

2 ∑
k

j = 1
‖zj -

h(x j) -rj‖2
R -1 + lnC (30)

由于 J 与 ln
 

J 有共同的极值点,令其偏导为 0,得:
∂ln

 

J
∂Qk

= 0,　 ∂ln
 

J
∂Rk

= 0 (31)

　 　 由于噪声服从零均值的高斯分布,则可以得到

最大后验概率噪声估计器为:

Qk =
1
k ∑

k

j = 1
{[∑

2na

i = 0
wc

i(X j| i(7:8,:) -x- j(7:8,:))] ×

　 　 [∑
2na

i = 0
wc

i(X j| i(7:8,:) -x- j(7:8,:))]
T
}

Rk =
1
k ∑

k

j = 1
{[zj - hj(xj) -rj] ×[zj - hj(xj) -rj]T}

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

(32)
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其中,
 

h j(x j) 表示状态预测 x j 经过量测函数

h j(·) 传递之后的后验值[33] 。
这样就可以获得噪声估计,但是随着时间的递

推,早期时刻的状态对于当前时刻噪声的影响开始

逐渐减少,因此可以通过指数加权的方式来构造自

适应噪声[34] 。
当有一组数据 {an}, 每一项都受到前面项的影

响,指数加权平均定量描述了这种影响。 指数加权

平均的一般公式为[34] :
 

Lt = βLt -1 + (1 - β)θt (33)
　 　 其中, β 是一个超参数,可以人为设定一个值;
Lt 表示 t时刻下的估计值值; θ t 表示第 t个数据的测

量值。 Lt 经过指数加权平均后,曲线会更加平滑。
对于噪声,可以根据式(32)中更改加权系数来

更新公式:

Q̂k = βQQ̂k-1 + (1 - βQ)[∑
2na

i = 0
wc

i(X j| i(7:8,:) -

　 　 x- j(7:8,:))] ×[∑
2na

i = 0
wc

i(Xj| i(7:8,:) -x- j(7:8,:))]
T

R̂k = βRR̂k-1 + (1 - βR)[zk - h(xk) -rk] ×

　 　 [zk - h(xk) -rk] T

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

(34)
这样就可以获得自适应噪声,提高了 UKF 算法

的精度和鲁棒性。

4　 实验及分析

为了验证上文中算法的可行性和有效性,结合

文章对移动机器人系统和传感器定位系统模型的分

析,本节按照实际应用的需求搭建了移动机器人实

验平台,通过在线同步获得 2 个定位系统的数据,采
用离线方法进行数据融合算法研究,并对论文算法

进行实验和结果分析。
4. 1　 数据获得和分析

首先搭建实验场景,实验选自一块平坦且采光

较好的空地,并在周围提供了很多具有图像特征的

物体,便于提高激光与视觉传感器对周围物体提取

特征的精度。 实验场景如图 6 所示。 小车根据①图

的路线前行,在 4 个拐角处各转 90°以形成一个圆

角矩形轨迹,下面的图②③④分别表示拍摄该处拐

角的视角图。
　 　 单一传感器定位系统均有较明显误差,一般采

用均方根绝对误差来衡量。 计算得到激光雷达定位

系统相较于理想轨迹均方根绝对误差为 10. 3%,视

觉传感器定位系统均方根绝对误差为 24. 6%。

图 6　 实验场景

Fig.
 

6　 Experimental
 

scene

4. 2　 数据融合结果

论文采用基于时间顺序的 UKF 松耦合方案,分
别进行了常值噪声估计和自适应噪声估计算法的验

证。 为无自适应噪声算法、激光、视觉三组定位结果

同理想真值的比较结果如图 7(a)所示,该融合算法

相较于激光定位和视觉定位在轨迹精度上均有明显

提高,计算得出没有加入自适应噪声算法平均绝对

误差为 3. 5%。 无、有自适应噪声算法的对比结果

如图 7(b)所示。 分析可知,有自适应噪声算法相比

于无自适应噪声算法在轨迹上更加贴合理论结果,
计算得到有自适应噪声算法平均绝对误差为 2%。

未加自适应噪声UKF融合轨迹
激光定位轨迹
视觉定位轨迹
真实轨迹

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

-0.5
-1.5-1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5

X/m

Y/
m

(a)
 

无自适应算法、激光、视觉定位结果与理想轨迹
 

自适应噪声UKF轨迹
无自适应噪声UKF轨迹
理想轨迹

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

-0.5
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5
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m

(b)
 

有无自适应噪声融合算法与理想轨迹

图 7　 实验结果

Fig.
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results
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　 　 图 8 给出有、无自适应噪声融合算法轨迹误差

比较。 根据图 8 得到,无自适应噪声融合算法有 2
处误差高峰极为明显( ①与③范围内)。 自适应噪

声相比于常值噪声有一定的优化效果,①处误差高

峰通过较为准确的视觉定位结果矫正了激光雷达定

位,减小了误差;③处误差高峰通过自适应滤波算法

获取合理的噪声取值,使得滤波结果精度提高,定位

误差减少。 但当定位系统的预测结果远离真值时,
如②处框内两算法误差均有增加。 这是由于转角处

实验室门打开,空旷场地下雷达没有扫描到障碍物

信息,导致定位结误差偏大,无法完全通过滤波算法

来消除误差。

自适应噪声UKF轨迹与
理想轨迹误差

无自适应UKF轨迹与
理想轨迹误差

0.12

0.10

0.08

0.06

0.04

0.02

0
index

er
ro
r/%

图 8　 有无自适应噪声融合算法轨迹误差比较

Fig.
 

8　 Comparison
 

of
 

trajectory
 

errors
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fusion
 

algorithms

5　 结束语

在滤波算法的实现上,UKF 是卡尔曼滤波针对

非线性方法的变形。 本文为了提高移动机器人定位

精度,构建了基于 UKF 的融合算法将 GMapping 和

ORB-SLAM2 进行融合。 相较依靠单一传感器定位

系统,该融合算法精度有了显著提高。 提出了基于

时间序列法的融合策略,根据不同传感器定位系统

的数据周期特征,弥补了空缺时间内缺少的定位数

据,提高了定位的鲁棒性;同时为了进一步提高精

度,提出了指数加权的自适应噪声来改进 UKF 算

法,相比于常值噪声,根据小车所处周围环境来优化

噪声权值,提高了定位精度。 本算法相较于一般

UKF 算法在鲁棒性和准确性上都有提升,更加适应

于非线性场景。
下一步工作将本算法用于在线数据融合实验验

证,验证算法的实时性和可用性。
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