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Multi-view augmentation based Cross—layer Cross—comparison
Learning recommendation method

ZHANG Heng, XIE Chengyuan, CHENG Yu, GONG Wenzheng

(School of Electronics and Information Engineering, Anhui Jianzhu University, Hefei 230601, China)

Abstract . Existing sequential recommendation models based on Graph Convolutional Neural network ( GCN) have certain
shortcoming, witch is the perception of different layers is not balanced. Based on the above problem, a Multi—view Augmentation
based Cross—layer Cross—comparison Learning recommendation framework method MACCL is proposed. The research constructs a
user project interaction diagram, user diagram and project diagram, using two different view augmentation methods on the diagrams
to avoid the negative impact of a single augmentation method. The user—item graph is enhanced using the method of randomly
adding noise, and a new view enhancement method is added for the user and project graphs to enhance the node representation of
neighbourhood entities by adding the relational attention mechanism. Subsequently, the embedded representations of different layers
of the two views are cross—referenced across layers separately to obtain more balanced features. Finally, the models are jointly
optimised as a way to improve recommendation performance. Extensive experiments are conducted on two public datasets, namely
Tmall and Amazon-book, and the experimental results demonstrate the effectiveness and feasibility of MACCL.
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Fig. 1 MACCL model diagram
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Table 1 Dataset statistics

it Amazon—book Tmall

#Users 78 578 47 939

#ltems 77 801 41 390
#Interactions 3190 224 2 357 450
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Table 2 Performance statistics

G eI SR-GNN  GCE-GNN GRU4Rec  LightGCN SGL HCCF DuoRec MACCL
Recall@5  0.1370  0.176 2 0.010 5 0.0117 0.327 4 0.354 6 0.3364  0.407 1

Recall@ 10 0.248 1 0.253 7 0.037 1 0.0996  0.4313 0.478 3 0.3906  0.4225

Amazon-books NDCG@5  0.201 7 0.243 9 0.018 2 0.236 5 0.249 8 0.334 2 0.426 1 0.458 2
NDCG@10  0.236 9 0.256 1 0.025 8 0.2090  0.3125 0.359 5 0.468 3 0.492 1

Recall@5  0.116 8 0.205 7 0.088 5 0.2553 0.268 6 0.2015 0.358 5 0.365 8

Tmall Recall@ 10 0.1742  0.2390 0.984 6 0.378 9 0.446 2 0.298 2 0.396 1 0.4217
NDCG@5  0.128 9 0.214 8 0.0759 0.154 3 0.1839 0.3528 0.3479  0.4059

NDCG@10  0.2006  0.259 2 0.083 5 0.208 7 0.246 3 0.416 9 0.4016  0.4570
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Table 3 Ablation experiment

Blgk Eizt MACCL-A MACCL-B MACCL-C MACCL
Recall@ 5 0.3129 0.174 2 0.1135 0.407 1

Amazon-books  Recall@ 10 0.335 4 0.190 3 0.167 2 0.4225
NDCG@ 5 0.278 1 0.118 2 0.109 4 0.458 2

NDCG@ 10 0.300 7 0.136 4 0.112 8 0.492 1

Recall@ 5 0.152 4 0.148 0 0.146 2 0.365 8

Tmall Recall@ 10 0.138 3 0.152 6 0.120 3 0.4217
NDCG@ 5 0.112°8 0.126 5 0.118 2 0.405 9

NDCG@ 10 0.132 6 0.152 7 0.1329 0.457 0
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Table 4 Experimental analysis of data sparsity

/i8S Eistuy SGL HCCF MACCL
Amazon-book  NDCG@10  0.3125 0.3595 0.4225
Recall@ 10 0.4313  0.4783  0.492 1

Tmall NDCG@10 0.2463 0.4169  0.4570
Recall@ 10 0.4462  0.2982  0.4217
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Table 5 Analysis of temperature hyperparameters
Hlatk EHR 0.1 0.3 0.5 0.7 0.9
Amazon—book NDCG@ 10 0.386 1 0.3759 0.422 5 0.3718 0.3549
Recall@ 10 0.476 9 0.4823 0.492 1 0.443 7 0.4390
x6 MKRBSEIW
Table 6 Analysis of loss hyperparameters
Bl £t le—4 le-5 le—=6 le—7 le-8
Amazon—book NDCG@ 10 0.394 3 0.402 8 0.418 6 0.4225 0.387 4
Recall@ 10 0.437 2 0.440 1 0.446 5 0.492 1 0.423 0
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