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Mask wearing detection algorithm based on improved YOLOv8n
LIAO lJiayi, FENG Ao, JIANG Yinying, LUO Jin

(College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

Abstract: Aiming at the problems of high leakage rate and slow detection speed when manually detecting mask wearing, an
improved YOLOv8n mask wearing detection model is proposed. Firstly, the CA attention mechanism is introduced into the
YOLOV8n network model by introducing the CA attention mechanism to improve the computational efficiency. Secondly, the
CBAM attention mechanism is added to the YOLOv8n network model to enhance the relationship between the channels of the feature
map. Finally, the WIoU loss function is introduced to guide the network training, and the weight coefficients are assigned between
the prediction frames to improve the model ‘s inference ability and detection accuracy. The experimental results show that the
improved YOLOvVS8n mask detection model in this paper has a high mAP value of 91. 6% compared to the original model, an
improvement of 2. 1%. The detection speed is as high as 85 FPS, an improvement of 7. 5% , which can meet the accuracy and speed
requirements of real scene applications.
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Fig. 2 C2f module before and after improvements
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Table 1 Configuration of the experimental platform
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Fig. 5 Comparison of mAP
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Fig. 6 Comparison of detection effect
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Table 2 Comparison of experimental results of adding CBAM

attention mechanisms at different locations
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Table 3 Comparison of experimental results of different models

Model Params/M  Size mAP FPS
AAEAY 5.94 640x640  0.916 85
YOLOv8n 5.96  640x640  0.895 79
YOLOv7-tiny 11.70  640x640  0.897 44
YOLOv5s 13.70  640x640  0.854 23
Faster R-CNN  108.00  640x640  0.525 15

4 ZERIE

AR SCER X BRAT 1 B8 SA: 0 5 3  R E1K
R PN 4 ) AL, 3 ek e b R A R B TE B 1AL
il AL PR EACIE YOLOVSn B8 241 1 —F
fe ke BE I SRS I R 1 TR Cof Akrh
I CA VEE JIHLH, 45t i A A 1 OC SH AR fiE 42 B
fie. RJE,EEET W53k CBAM & J1HLH,
O 2 I 2 (R S RIERATRE S, i — 2 E T



510 B,

8. EETEGHE YOLOVSn 1 171 S8 {ifl B0 RG 4572 149

WloU 512K pREL, 20 o W 2% £ ToU 3155 (1 AL 43
Je, $t e P 2 RS IR B2 . e f , AN RIS A8 11 B A
RS A | BdE 5 ) YOLOvSn 15 RS F 12
mAP k%] 91. 6% , K il i £ 42 T, 1551 85 FPS, fgfs
it & SEBR s H# oK

[1] SRAE. Wik B/ R BN TR [ 1], 22 4ol

PR, 2013, 9(4) ¢ 67-71.
(2] VBRI, T8, 2200, G2 B SR H B AG I3 2 0 5 2k
[J]. WEPLT RS, 2021, 57 (8): 10-25.
KSR, Geon, HHMGAE. WSS AR ke[ 1],
FE LKA, 2020, 25(4) : 629-654.
GIRSHICK R, DONAHUE J, DARRELL T, et al. Region—based

convolutional networks for accurate object detection and

(3

—

[4

[l

segmentation [ J ]. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2016, 38(1); 142-158.

[5] WANG Xiaolong, ABHINAV S, ABHINAV G. A-Fast-RCNN;
Hard positive generation via adversary for object detection[ C]//
Proceedings of 2017 IEEE Conference on Computer Vision and
Pattern Recognition ( CVPR). Piscataway, NJ. IEEE, 2017:
3039-3048.

[6] HE Kaiming, GKIOXARI G, DOLLAR P, et al. Mask R—CNN
[ C ]//Proceedings of the IEEE International Conference on
Computer Vision. Piscataway,NJ: IEEE, 2017 2980-2988.

[7] . BT SSD Fiykm 1 SEARE R IR [ 1], RHEC S 63T,
2022, 29(18): 101-103.

[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look
once ; Unified, real-time object detection| C|//Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.
Piscataway ,NJ; IEEE, 2016: 779-778.

[9] LINTY, GOYAL P, GIRSHICK R, et al. Focal Loss for dense
object detection[ J]. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020, 42(2); 318-327.

[10] 208, Zoai, WS, 45, 2 R R J) %% 2 1Y) Faster R-
CNN HEE AR RL [ )], 7Y i 50l R £ 40, 2021, 56
(5): 1002-1010.

(1LTH B, MIFRE] BTG5 BRI D A I iR [T ]
BT I B4R, 2023, 45(5) : 98-102.

[12]ZERMH, JRit4, BIgEE, 45, ST Hut SSD iy I B Rl a e il
B[], HSEHLTAR, 2022, 48(8) : 173-179.

[I3]XIELE, 5K k. 2T %2t #9 Faster R—CNN AY4T A LA P
[J]. BURIHERL, 2021, 27(26) : 73-76.

(141467, i, 2R, 4%, Btk RetinaFace 1Y F #8375t 11 5
TEAS ISk (7], AL T RS N, 2020, 56(12) : 1-7
(15T oy, sRerse, fafBidyy. MGl e o a8 A

ML T]. PR ST, 2023, 59(3) : 166-174.

[16]FhKkZE. T Bk YOLOX Y H%WQ&MM‘J%%WH“%@E%
[D]. BHL: ZRGEFIRY:, 2023.

[17]HOU Qibin, ZHOU Dequan, FENG Jiashi. Coordinate attention
for efficient mobile network design [ C ]//Proceedings of 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition ( CVPR ). Piscataway, NJ.: IEEE, 2021. 13708 —
13717.

[18]WOO S, PARK J, LEEJ Y, et al. CBAM: convolutional block
attention module [ C ]// Proceedings of the European Conference
on Computer Vision (ECCV). Cham; Springer, 2018, 3-19.

[ 19]ZHENG Zhaohui, WANG Ping, REN Dongwei, et al. Enhancing
geometric factors in model learning and inference for object
detection and instance segmentation [ J]. IEEE Transactions on
Cybernetics, 2021, 52(8) : 8574-8586.

[20] TONG Zanjia, CHEN Yuhang, XU Zewei, et al. Wise—IoU:
Bounding box regression loss with dynamic focusing mechanism
[J]. arXiv preprint arXiv,2301. 10051, 2023.



