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Non-local defense for pedestrian re—identification with feature denoising
LU Ze, WANG Jin, ZHANG Linyu, GU Xiang, WAN Jie
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Abstract: To deal with the issue of robustness of pedestrian re—identification systems, a defense method named NFD ( Non-local
Feature Denoising) is proposed. Firstly, in the preprocessing stage, RGB channel-level random erasure is applied separately to each
of the RGB channels of the image. This use of random erasure in each channel achieves data randomness across different channels.
Secondly, a feature denoising block is designed, constructed with non-local means, convolution, and residual connections. This
block captures long—range dependency information and can be combined with any existing convolutional neural network. Lastly, a
joint hard—sample triplet loss function is employed, combined with the cross—entropy loss function regulated by label smoothing.
The experimental results show that under attack, the NFD can increase the mean of Average Precision ( mAP) of mainstream
pedestrian re—identification systems from 2. 6% to 82. 1%.
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Fig. 1 NFD network model structure
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Fig. 2 Non-local feature denoising block
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