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Research on cross—perspective gait cycle classification algorithm
based on SAM-AlexNet

LUO Zi’ang, WU Qinmu

(College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

Abstract: With the development of biometric identification technology, gait recognition technology has attracted more and more
attention, and gait cycle detection technology is an important link in the gait recognition system. In order to solve the problems of
error—prone and low accuracy of gait cycle classification, this paper proposes a cross-—perspective gait cycle classification model
based on SAM-AlexNet, which firstly uses bicubic interpolation and non-local mean filtering to preprocess gait profile images.
Then, the Sobel operator is used to extract the human edge features and fuse them with the original image, and the model can better
capture the key information of the gait profile. Secondly, the Spatial Attention Mechanism ( SAM) is introduced to enable the model
to focus more on the regions that are more critical to the classification task, which further improves the performance of the model.
Experimental results show that the optimized model achieves good performance in the gait cycle tri—classification task, with an
accuracy of 93%. Compared to the AlexNet base model, the improvement is more than 5%. Therefore, the model proposed in this
paper can effectively improve the classification ability of gait cycle.
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Fig. 4 Flowchart of gait image classification
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Fig. 8 Cycle detection classification validation results
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