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摘　 要:
 

步态识别技术随着生物特征识别技术的发展受到越来越多的关注,步态周期检测技术是步态识别系统中的一个重要

环节。 针对步态周期分类易出错、准确率低等问题,本文提出了一种基于 SAM-AlexNet 的跨视角步态周期分类模型。 首先,
使用双三次插值和非局部均值滤波对步态轮廓图像进行预处理;然后,使用 Sobel 算子提取人体边缘特征,并将其与原始图像

进行融合,模型能够更好地捕捉到步态轮廓的关键信息。 其次,引入了空间注意力模块(Spatial
 

Attention
 

Mechanism,SAM),
使模型能够更加聚焦于对分类任务更为关键的区域,进一步提升了模型的性能。 实验结果表明,该优化模型在 CASIA-B 数

据集的不同视角下行人步态周期三分类任务上取得了较好的性能,准确率达到 93%。 与 AlexNet 基础模型相比提高近 5%。
因此,本文所提出的模型能够有效地提高步态周期的分类能力。
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Abstract:
 

With
 

the
 

development
 

of
 

biometric
 

identification
 

technology,
 

gait
 

recognition
 

technology
 

has
 

attracted
 

more
 

and
 

more
 

attention,
 

and
 

gait
 

cycle
 

detection
 

technology
 

is
 

an
 

important
 

link
 

in
 

the
 

gait
 

recognition
 

system.
 

In
 

order
 

to
 

solve
 

the
 

problems
 

of
 

error-prone
 

and
 

low
 

accuracy
 

of
 

gait
 

cycle
 

classification,
 

this
 

paper
 

proposes
 

a
 

cross-perspective
 

gait
 

cycle
 

classification
 

model
 

based
 

on
 

SAM-AlexNet,
 

which
 

firstly
 

uses
 

bicubic
 

interpolation
 

and
 

non- local
 

mean
 

filtering
 

to
 

preprocess
 

gait
 

profile
 

images.
 

Then,
 

the
 

Sobel
 

operator
 

is
 

used
 

to
 

extract
 

the
 

human
 

edge
 

features
 

and
 

fuse
 

them
 

with
 

the
 

original
 

image,
 

and
 

the
 

model
 

can
 

better
 

capture
 

the
 

key
 

information
 

of
 

the
 

gait
 

profile.
 

Secondly,
 

the
 

Spatial
 

Attention
 

Mechanism
 

(SAM)
 

is
 

introduced
 

to
 

enable
 

the
 

model
 

to
 

focus
 

more
 

on
 

the
 

regions
 

that
 

are
 

more
 

critical
 

to
 

the
 

classification
 

task,
 

which
 

further
 

improves
 

the
 

performance
 

of
 

the
 

model.
 

Experimental
 

results
 

show
 

that
 

the
 

optimized
 

model
 

achieves
 

good
 

performance
 

in
 

the
 

gait
 

cycle
 

tri- classification
 

task,
 

with
 

an
 

accuracy
 

of
 

93%.
 

Compared
 

to
 

the
 

AlexNet
 

base
 

model,
 

the
 

improvement
 

is
 

more
 

than
 

5%.
 

Therefore,
 

the
 

model
 

proposed
 

in
 

this
 

paper
 

can
 

effectively
 

improve
 

the
 

classification
 

ability
 

of
 

gait
 

cycle.
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0　 引　 言

步态周期检测[1] 是指通过分析步态图像或其

他相关数据,识别和测量人体行走或运动中的步态

周期。 步态周期检测在医学[2] 、运动科学[3] 和生物

力学[4]等领域具有重要的应用价值。 步态周期检

测是人体步态分析[5] 的关键步骤之一,对于理解和

评估人体运动模式、诊断运动障碍[6] 以及设计康复

方案具有重要意义。 步态周期[7] 是指从一个足部

接触地面开始到下一个足部接触地面结束的时间间

隔。 准确地检测和测量步态周期可以提供关于步态

稳定性、步态对称性以及步态异常的信息。 因此,步
态周期检测在临床医学、康复工程和运动科学等领

域展现出广阔的应用前景。



许多步态识别算法依赖于步态周期的识别来准

确提取特征,步态周期的精度对于步态分析和识别

非常重要。 跨视角步态周期检测是指在不同摄像机

视角下对步态周期进行准确检测。 由于不同视角下

人体的外观和姿态变化,跨视角步态周期检测具有

一定的难度。 视角变化可能导致人体的形状、大小、
姿态等特征发生变化,从而影响步态周期的检测

精度。
跨视角步态周期检测的意义在于提高步态分析

和识别的鲁棒性和实用性。 在现实应用中,摄像机

的位置和角度可能会发生变化,因此能够准确地在

不同视角下检测步态周期,可以使步态分析和识别

系统更加稳健和可靠。 Rogez
 

等学者[8] 使用低维流

形对
 

3
 

维姿势和相机视角进行建模并学习轮廓的

生成模型,通过在场景的水平面和姿势视角流形上

联合使用递归贝叶斯采样,进行具有高透视效果的

视角不变
 

3
 

维步态跟踪。 然而,这种跟踪必须在人

为设置的环境中进行。 张云佐等学者[9] 利用

BlazePose 模型对行人视频数据集进行步态周期检

测,但该方法依赖于特定的外观和形状特征来进行

识别。 在 18°和 36°视角下,人体的外观和形状可能

会发生较大的变化,导致算法难以准确地识别步态

周期。 徐怡博[10] 利用分类和回归两种方法对于步

态轮廓图数据集进行步态周期检测,尽管回归方法

可以提供更精细的时间信息,但在实际应用中需要

权衡标注工作的复杂性和数据集的要求。 分类方法

相对而言更简单和易于实施,因此在某些情况下可

能更为实用。
因此,本文基于 Sam-AlexNet 网络模型提出了

基于分类的步态周期检测,相比过往方法优化图像

预处理流程,将人体边缘特征与原始图像相结合作

为输入,在 AlexNet 基础模型中加入空间注意力模

块,采用改进的网络模型进行步态周期特征提取,完
成最终的步态周期检测。 与已有的方法相比,该方

法减低了周期特征提取的难度和计算量,并可在跨

视角条件下进行步态周期检测。

1　 模型设计

1. 1　 AlexNet 网络模型

在 AlexNet 模型出现之前,传统的机器学习方

法在 图 像 分 类 任 务 上 表 现 不 佳。 在 2012 年,
Krizhevsky 等学者提出了 AlexNet,通过引入深度卷

积神经网络[11]的概念,成功地将图像分类的准确率

提升到了一个新的高度。 这一成果不仅开创性地提

供了使用深度神经网络来解决图像问题的有效途

径,同时也引发了产业界对神经网络的兴趣,随后在

这一 领 域 的 优 秀 成 果 也 不 断 涌 现。 VGGNet、
GoogleNet 和 ResNet 等网络即是基于 AlexNet 网络

的演进发展,在网络的层数和深度上皆有增加,因此

能够更好地处理更复杂的图像识别[12]任务。
AlexNet 的具体结构如图 1 所示,AlexNet 模型

的权重层包括 5 个卷积层和 3 个全连接层,AlexNet
采用了深度卷积神经网络结构,通过多层卷积层和

池化层的堆叠,有效提取图像特征。 使用 ReLU 作

为激活函数,解决梯度消失问题,也进一步提升了计

算速度。 引入 LRN 操作增强模型泛化能力和鲁棒

性。 在卷积层后使用 Dropout 操作防止过拟合,减
少神经元间依赖关系。
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图 1　 AlexNet 结构图

Fig.
 

1　 Structure
 

of
 

AlexNet
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　 　 本文选择 AlexNet 作为基础模型的原因是相比

于 VGGNet、GoogleNet 或 ResNet 等更深、更复杂的

网络结构来说,AlexNet 具有相对简单的网络结构和

较低的计算复杂度。 由于步态轮廓图是二值图像,
当与彩色图像或具有丰富语义信息[12-13] 的图像相

比后可知,步态轮廓图的信息相对较少。 使用较深

的网络结构可能会导致过拟合或计算资源的浪费。
而 AlexNet 作为最早成功应用于大规模图像分类任

务的深度卷积神经网络,具有适度的深度和复杂度,
能够提取足够的特征信息,同时具有较快的训练速

度和较低的计算资源需求。 因此,选择 AlexNet 作

为本文的基础模型是合理的选择。 AlexNet 不仅具

有适度的复杂度、较低的计算资源需求,并且能够提

取足够的特征信息进行后续的步态识别。 尽管步态

轮廓图可能缺乏丰富的语义信息,但 AlexNet 仍然

可以通过学习轮廓的形状和纹理等特征来进行有效

的分类和识别。
1. 2　 空间注意力模块

空间注意力模块(Spatial
 

Attention
  

Module)是一

种允许卷积神经网络关注输入图像中信息最丰富的

部分的模块。 使用空间注意力模块的主要优点是能

够选择性地放大相关特征并抑制不相关特征。 这使

得卷积神经网络能够专注于输入步态轮廓图像中信

息最丰富的部分,从而获得更好的任务性能。 此外,
空间注意力模块的计算效率很高,因为空间注意力

模块只使用 2 个池化操作和 1 个卷积层,空间注意

力模块的结构如图 2 所示。 由图 2 可知,第 1 个池

化操作是平均池化操作,用于计算通道上每个特征

的平均值。 第 2 个池化操作是最大池化操作,用于

计算通道上每个特征的最大值。 然后将这 2 个池化

特征图连接起来并输入到具有 7×7 滤波器大小的

标准卷积层中,从而生成 2D 空间注意力图。

空间注意力模块（SpatialAttentionModule）

特征F
最大，平均池化

激活函数

空间注意力Ms

卷积层

图 2　 SAM 模型结构图

Fig.
 

2　 Structure
 

of
 

the
 

SAM
 

model

　 　 空间注意力图的计算公式为:
Ms(F) = σ( f

   7×7([AvgPool(F);MaxPool(F)]))
(1)

　 　 其中, Ms 表示空间注意力图;F 表示输入特征

图;σ 表示 Sigmoid 函数; f
   7×7 表示滤波器尺寸为 7×

7 的卷积操作;AvgPool 和 MaxPool 分别表示平均池

化和最大池化操作;“[]”表示串联。
1. 3　 整体模型结构

基础的 AlexNet 模型是在彩色图像数据集上进

行训练和设计的,而步态轮廓图是二值图像,信息量

较少。 这就使得传统的 AlexNet 无法充分利用步态

轮廓图中的特征信息,从而可能导致分类性能下降。
同时,传统的 AlexNet 在训练时使用了大量的参数,
而步态轮廓图数据集相对较小,这可能导致过拟合

的风险。 为了克服这些不足,本文对 AlexNet 基础

模型进行了改进。
首先,在第 1、3、5 卷积层后引入了批归一化操

作。 批归一化可以对每个批次的输入进行归一化处

理,减少内部协变量转移的影响,使得网络更容易训

练和优化,加速了训练过程,并解决了梯度消失和梯

度爆炸的问题。
其次,由于在深层网络中,特征的抽象程度逐渐

增加,网络更加关注全局信息,因此在较深的层次上

引入这些层可能会带来较小的收益。 此外,引入这

些层也会增加模型的复杂性和计算成本。 通过实验

后本文选择在第 1、3、5 卷积层后加入 SAM 空间注

意力模块,以更好地提取步态轮廓图中的边缘信息。
空间注意力模块通过选择性地放大与步态轮廓边缘

相关的特征并抑制其他不相关的特征,提高模型对

步态轮廓边缘信息的敏感性。
这些改进使得本文模型能够更好地适应步态轮

廓图的特点,充分利用其特征信息,并显著提高了步

态轮廓图的分类准确率。 SAM-AlexNet 模型设计如

图 3 所示。
1. 4　 损失函数和优化算法的选择

 

(1)损失函数。 交叉熵损失函数在深度学习中

用于衡量预测分布与真实分布之间的差异,可以作

为优化目标函数来指导模型的训练方向。 在步态识

别任务中,选择交叉熵损失函数作为优化目标函数,
可以评估模型对于不同步态类别的预测准确性,并
指导模型在训练过程中逐渐优化预测分布与真实分

布之间的差异。 交叉熵函数的数学定义公式具体

如下:

L = - ∑
N

i = 1
yi log(xi) (2)

　 　 其中, N表示样本的数量;yi 表示真实标签的概

率分布;xi 表示模型的预测结果的概率分布。
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(2 ) 优化算法。 随机梯度下降 (
 

Stochastic
 

Gradient
 

Descent,SGD)算法通过随机采样少量训练

样本来计算梯度,具有计算速度快、硬件要求低的优

势。 然而,却也存在收敛不稳定的问题。 为了解决

这个 问 题, 本 文 引 入 自 适 应 学 习 率 ( Adaptive
 

Learning
 

Rate),以减缓不稳定的收敛状态。 此外,
优化算法中还使用了权值衰减和神经元失活等技术

来防止过拟合,提高模型的泛化能力。
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图 3　 SAM-AlexNet 模型设计

Fig.
 

3　 SAM-AlexNet
 

model
 

design

1. 5　 整体流程

SAM-AlexNet 模型实现步态轮廓图像分类整体

流程如图 4 所示。 首先,将 CASIA-B 数据集中的步

态轮廓图按照 0°,18°…,180°这 11 个不同视角进行

分类,然后通过人工方式对每个视角下的数据集进

行三分类,对分类后的步态轮廓图像进行预处理,使
用 Sobel 算子提取人体边缘特征并将其与原始图像

进行融合[14] ,以突出人体的轮廓,从而有利于提升

模型的分类性能,接下来再将数据集按照 6 ∶ 2 ∶ 2
的比例划分为训练集、验证集和测试集。 其中,训练

集用于模型的训练,验证集用于调整模型的超参数

和进行模型选择,测试集用于评估模型的性能。 最

后将步态轮廓图作为输入数据, 输入至 SAM -
AlexNet 网络模型中进行训练和测试。 并对分类结

果进行性能评估。

结束

性能评估

分类器

SAM-AlexNet分类模型

60%训练集 20%验证集 20%测试集

数据划分

CASIA-B步态
轮廓图数据集

步态轮廓图像预处理

提取人体边缘特征

开始

原始图像

融合

图 4　 步态图像分类流程

Fig.
 

4　 Flowchart
 

of
 

gait
 

image
 

classification

2　 实验结果分析

本实验平台为一块 GPU 显卡,GPU 型号为 NVIDIA
 

GeForce
 

RTX
 

3060,该 GPU 显存为 11. 75
 

GB,显卡频率

1. 35
 

GHz。 实验基于深度学习框架为 Keras2. 6. 0 和

TensorFlow2. 6. 0,使用 Python3. 9 语言编程。
2. 1　 数据集描述和预处理

(1)数据集的选取和分类。 本文采用 CASIA-B
数据集进行步态周期的分类。 CASIA-B 是中国科学

院自动化研究所提供的一个大规模、多视角的步态数

据集。 该数据集采集于 2005 年 1 月,旨在用于步态

识别和人体行为分析等研究领域。 CASIA-B 数据集

包含了 124 例采集者的原始视频数据和轮廓图像,每
个人在 11 个不同视角下进行采集。 这些视角从 0° ~
180°、以 18°为间隔,涵盖了行人行走时的不同方向。

徐怡博[10]在步态周期三分类时根据周期的帧

数特征,将一个周期固定划分为 24 帧,并将每个类

别的帧数固定为 4 帧,如图 5 所示。 3 个类别依次

是后腿支撑、双腿支撑和前腿支撑。

（a）后腿支撑

（b）双腿支撑

（c）前腿支撑
图 5　 固定帧数步态三分类

Fig.
 

5　 Fixed
 

frame
 

number
 

gait
 

triple
 

classification
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　 　 然而,这种分类方法在数据集中引入了一定的

误差,由于不同个体的步态特征和行走速度等因素

的差异,并非所有人的每个步态类别下都是固定的

4 帧。 实际上,数据集中的样本每个步态类别所占

帧数[15] 分布在 2 ~ 4 帧之间。 尽管与实际情况相

比,这种差异并不显著,但仍然存在一定的误差。 为

了减小这种误差,本研究采用了人工标注的方法对

数据集进行了更加精确的分类。 通过这种方式,确
保了每个步态周期类别中包含由 2、3、4 帧组成的样

本。 在双腿支撑的分类情况下,具体如图 6 所示。
图 6 中清晰展示了每个类别中包含的不同帧数组成

的双腿支撑类别。

（c）4帧

（a）2帧 （b）3帧

图 6　 非固定帧数双腿支撑

Fig.
 

6　 Non-fixed
 

frame
 

number
 

double
 

leg
 

support

　 　 (2)数据集的预处理。 CASIA-B 步态轮廓图原

始图像存在一些不足之处。 首先,原始图像的尺寸

可能不一致,这会导致图像在输入模型之前需要进

行统一的尺寸调整。 其次,原始图像中可能存在噪

声和细节信息,这可能会干扰模型对步态特征的准

确提取。 为了提高模型对步态轮廓图像的分类准确

率,本文采用了双三次插值和非局部均值滤波的处

理方式。 双三次插值调整图像大小,消除了尺寸差

异对模型的影响,而非局部均值滤波处理则平滑了

图像,减少了噪声和细节信息,突出了步态轮廓的形

状和结构,处理前后的对比如图 7 所示。 这种预处

理方式提高了图像质量和一致性,为模型提供了更

准确、更清晰的输入。 通过这样的处理,模型能够更

好地理解和提取步态特征,从而显著提升了对步态

轮廓图像的分类准确率。 最终将预处理后的图像进

行手动标记并放入对应的类别中,所有视角完成标

记的数量为 60
 

000 张左右,再将处理后的 11 个视

角的数据集按照 6 ∶ 2 ∶ 2 的比例划分为训练集、验
证集、测试集。 3 种数据集的种类和数量见表 1。

（a）原始图像 （b）处理后图像
图 7　 处理前后对比图

Fig.
 

7　 Comparison
 

before
 

and
 

after
 

processing

表 1　 数据集种类和数量

Table
 

1　 Type
 

and
 

number
 

of
 

data
 

sets

数据集
步态类别

前腿支撑 双腿支撑 后腿支撑

训练集 12
 

000 12
 

000 12
 

000

验证集 4
 

000 4
 

000 4
 

000

测试集 4
 

000 4
 

000 4
 

000

2. 2　 边缘特征提取

本文将 Sobel 算子[16]应用于步态轮廓图像的边

缘特征提取,通过计算梯度幅值和方向突出步态轮

廓的形状和结构。 与直接输入原始图像相比,将原

始图像与边缘特征融合后进行分类可以强化边缘信

息来提供更具区分度的特征。 这种综合的预处理方

式提供了更准确、更鲁棒的特征表示,有助于提高步

态图像分类的性能和可靠性。
2. 3　 实验结果与分析

本文进行训练采用超参数为:批处理大小为每

批 32 张图片,基础 AlexNet 模型训练轮数为 150 轮,
SAM-AlexNet 模型训练轮数为 100 轮,学习率为

0. 000
 

1。 模型训练结果如图 8 所示,基础 AlexNet
模型的准确率起初较低,在迭代 60 轮后才趋于平

稳,波动幅度稍大, 准确率达到 88. 72%; SAM -
AlexNet 模型则在迭代 20 轮后趋于平稳,且验证集

的 loss 值比基础 AlexNet 模型更小,波动相对较小,
最终准确率达到 93. 03%。 由此可见, 改进后的

SAM-AlexNet 模型相比基础 AlexNet 模型表现出更

快的训练速度和更高的分类准确率,并且在训练过

程中的波动幅度较小。 这表明改进后的模型具有更

好的收敛性和稳定性。
　 　 为了验证本文提出的模型在不同视角步态周期

分类的鲁棒性,将一个待测步态轮廓序列按照顺序

输入训练完成的卷积网络中,完成一个分类循环时,
即得到一个周期的步态轮廓图像。 具体的周期检测

见表 2。 本文通过 C 值来评价步态周期检测精度,
可由下式计算求出:
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(b)
 

SAM-AlexNet 模型

图 8　 周期检测分类验证结果

Fig.
 

8　 Cycle
 

detection
 

classification
 

validation
 

results

C =
| T - TS |

T
(3)

　 　 其中, T表示实际周期中的帧数,TS 表示检测到

的数目。 C 值越小,误差越小,方法得到的精度越

高。 相反,C值越大,性能越差。 表 2 的结果显示其

中 SAM-AlexNet 网络模型的平均误差最小,取得了

最好的识别结果,这也与验证集上得到的分类结果

一致。 除了 0°、90°和 180°视角外,其它视角的 C 值

均小于 0. 1,平均误差只有 1 ~ 2 帧,在可接受的范围

内。 由于步态轮廓图在 0°、90°、180°视角下,摄像机

中轴线与人体呈垂直关系,人体的轮廓相对镜头左

右对称,从图像中所能提取到的人体运动特征信息

没有其它视角那么丰富,所以在这 3 个视角周期检

测的误差相对较大,不过本文提出的 SAM-AlexNet
模型相对其他模型在跨视角步态周期检测精度方面

具有整体性的提升。

表 2　 基于分类的步态周期检测方法性能

Table
 

2　 Performance
 

of
 

classification-based
 

gait
 

cycle
 

detection
 

methods

内容
网络结构

LeNet AlexNet GoogLeNet 本文 AlexNet SAM-AlexNet

0° 0. 04 0. 30 0. 17 0. 16 0. 12

18° 0. 25 0. 33 0. 33 0. 14 0. 05

36° 0. 38 0. 04 0 0. 09 0. 03

54° 0. 50 0. 13 0. 17 0. 13 0. 06

72° 0. 36 0. 13 0. 17 0. 10 0. 08

90° 0. 16 0. 12 0. 16 0. 15 0. 10

108° 0. 28 0. 12 0. 12 0. 13 0. 09

126° 0. 32 0. 16 0. 24 0. 12 0. 04

144° 0. 24 0. 12 0. 28 0. 08 0. 03

162° 0. 46 0. 23 0. 15 0. 09 0. 04

180° 0. 40 0. 40 0. 12 0. 20 0. 13

Mean 0. 31 0. 18 0. 17 0. 13 0. 07

3　 结束语

本文首先采用非固定帧数的方法对每个步态周

期类别进行更加精确的分类,减小了数据集部分的

误差,同时采用双三次插值和非局部均值滤波[17] 对

原始图像进行预处理操作,平滑原始图像的边缘和

纹理以及减少图像中的噪声和伪影,使得步态轮廓

图更加清晰和准确,分类结果也更加稳定和可靠。

再将原始图像与人体边缘特征图像按权重融合,通
过融合人体边缘特征,可以增加模型对图像的语义

理解能力,增强模型对边缘信息的保持度。 本文提

出的 SAM-AlexNet 模型相比基础 AlexNet 模型增加

了多个批归一化层,提升了模型的收敛速度,减少了

网络对输入数据中的噪声和扰动的敏感度,从而提

高了网络的鲁棒性,再根据步态轮廓图二值图像的

特性引入空间注意力模块,强化关键区域的特征表
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示以及提高模型对局部细节的感知能力。 通过多个

基础模型的实验对比结果得知,AlexNet 基础模型相

比其他基础模型具有更高的分类准确率,所以本文

选取 AlexNet 作为基础模型, 本文提出的 SAM -
AlexNet 模型相比基础 AlexNet 模型提高了 5%的准

确率,且收敛速度更快、波动也较小。 深度学习在步

态周期检测中已经取得了一定的成果,但传统的信

号处理和模型建模[18] 方法仍然具有一定的优势。
未来的研究[19]可以探索将深度学习与传统方法[20]

相结合,充分利用两者的优势,进一步提高步态周期

检测的性能。
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