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Numerical simulation research on the fluid flow inside air cabins
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Abstract ; In recent years, in the face of people’s increasing demand for civil aviation travel, it is particularly necessary to study cabin
environmental pollution. This paper conducts three —dimensional modeling of the cabin and employs finite element analysis using

Computational Fluid Dynamics to simulate the airflow within the cabin. Flow fields under three different air intake rates are calculated

and their characteristics are analyzed. This study offers valuable insights for the design of air supply facilities within the cabin.
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Fig. 1 Model reconstruction of air cabin
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Fig. 3 Setting of the turbulence model panel
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Table 1 Boundary conditions setting
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Fig. 4 Comparative analysis of velocity vectors between simulation

and experimental measurements
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Fig. 5 The velocity contour in all sections of air cabin (0.51 m/s)
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Fig. 7 The velocity contour and vector in all sections
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Fig. 8 The velocity contour and vector of three cases with different

gas supply rates
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