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Small sample text classification based on improved LM-BFF
SHI Xintao, HAN Ren

(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,
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Abstract: The LM-BFF model achieves significant small-sample performance by adding natural language prompts to the text.
However, there is a risk that the model will overfit the pre—training tasks and data, the performance of the model is affected. In
order to overcome the gap between the model and the target downstream task, this paper introduces some improvements for LM -
BFF: Noisy-tuning is employed to help better fine—tune pre-trained language models by adding matrix perturbations; R-drop is
used to reduce inconsistencies by minimize the discrepancy between two consecutive forward passes during training and inference.
Experimental results indicate that the proposed model shows improvements over LM —BFF across multiple classification datasets.
Especially on SST-2 and SNLI dataset, accuracy is improved by 0. 7% and 1. 7% , respectively.
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Table 1 Manual templates and tag words

PGS iz TR
SST-2 <S8, > It was [ MASK] . positive; great, negative: terrible
MR <S, > It was [ MASK] . positive; great, negative; terrible
CR <S, > It was [ MASK] . positive; great, negative: terrible
Subj <S; > This is [ MASK] . subjective ; subjective, objective: objective
MNLI <S, > 7 [MASK], <SS, > entailment ; Yes, netural; Maybe, contradiction: No
SNLI <8, > 7 [MASK], <S5, > entailment ; Yes, netural; Maybe, contradiction; No
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Table 2 Experimental results in ROBERTa-large

s SST-2( acc) MR ( acc) CR(acc) MNLI( acc) SNLI( acc) Subj(acc)
Fine—tuning 81.4(3.8) 76.9(5.9) 75.8(3.2) 45.8(6.4) 48.4(4.8) 90.8(1.8)
LM-BFF (auto) 93.0(0.6) 87.7(1.4) 91.0(0.9) 70.0(3.6) 77.5(3.5) 91.4(1.8)
LM-BFF (auto) +43C  93.7(0.6) 89.3(0.7) 91.6(0.6) 70.6(2.9) 79.2(4.2) 91.5(1.7)
*3 AEEELE
Table 3 Comparison of different models
IR SST-2( acc) MR ( acc) CR(acc) MNLI( acc) SNLI( acc) Subj(acc)
LM-BFF 93.0(0.6) 87.7(1.4) 91.0(0.9) 70.0(3.6) 77.5(3.5) 91.4(1.8)
LM-BFF+RD 93.5(0.5) 89.1(1.1) 91.7(0.7) 69.7(2.2) 78.8(4.2) 90. 6(0. 8)
LM-BFF+RD+Noisy+tuning ~ 93.7(0.6) 89.3(0.7) 91.6(0.6) 70.6(2.9) 79.2(4.2) 91.7(1.7)
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