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摘　 要:
 

乳腺超声图像的精准分割对于乳腺癌的早期诊断具有重要意义。 尽管基于全监督学习的神经网络模型在乳腺超声

图像分割领域取得了一定的进展,但对标注数据的依赖限制了全监督模型的应用。 为此,提出一种伪标签像素级分类自集成

网络(Pseudo-label
 

Pixel
 

Classification
 

Self-integrated
 

Network,P2CS-Net)。 P2CS-Net 利用交叉双监督网络机制,通过 2 个并

行的分割网络生成差异性伪标签,在训练过程中使伪标签逐渐趋于一致。 同时通过计算伪标签像素间的交叉熵及设置阈值

获取低置信度像素集,并应用噪声转移矩阵对这些像素进行噪声建模及矫正,有效挖掘了其中潜在的语义信息。 此外,将迭

代训练过程中的伪标签基于指数平均移动方法进行自集成,进一步增强了模型对语义信息的利用。 在 3 个公开的乳腺超声图

像数据集上对 P2CS-Net 进行了实验验证,结果表明,仅有 20% ~ 30%的标注数据参与训练时,P2CS-Net 就能够显著超越现有

的半监督学习方法。 此外,即便标注数据有限,P2CS-Net 也能实现与全监督算法相媲美的性能,充分证明了其在乳腺超声图

像分割任务中的有效性和鲁棒性。
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Abstract:
 

Accurate
 

segmentation
 

of
 

breast
 

ultrasound
 

images
 

plays
 

a
 

crucial
 

role
 

in
 

the
 

early
 

detection
 

of
 

breast
 

cancer.
 

Although
 

fully
 

supervised
 

models
 

have
 

achieved
 

notable
 

success
 

in
 

breast
 

ultrasound
 

image
 

segmentation,
 

their
 

performance
 

is
 

contingent
 

upon
 

the
 

availability
 

of
 

a
 

large
 

volume
 

of
 

annotated
 

data,
 

which
 

has
 

limited
 

the
 

generalization
 

of
 

deep
 

neural
 

networks.
 

To
 

overcome
 

this
 

limitation,
 

a
 

Pseudo - label
 

Pixel
 

Classification
 

Self - integrated
 

Network
 

( P2CS - Net)
 

based
 

on
 

semi - supervised
 

learning
 

is
 

proposed.
 

P2CS-Net
 

introduces
 

a
 

cross
 

pseudo
 

supervision
 

that
 

leverages
 

the
 

strengths
 

of
 

two
 

parallel
 

yet
 

initially
 

uncorrelated
 

segmentation
 

networks.
 

These
 

two
 

networks
 

are
 

trained
 

concurrently
 

to
 

generate
 

a
 

diverse
 

set
 

of
 

pseudo-labels,
 

then
 

progressively
 

harmonized
 

through
 

a
 

training
 

process
 

driven
 

by
 

consistency.
 

By
 

computing
 

the
 

cross-entropy
 

between
 

pseudo- labels,
 

the
 

model
 

can
 

identify
 

low-confidence
 

pixels.
 

After
 

that,
 

noise
 

transfer
 

matrix
 

is
 

used
 

to
 

assist
 

in
 

noise
 

modeling
 

for
 

low-confidence
 

pixels.
 

The
 

semantic
 

information
 

in
 

these
 

easily
 

overlooked
 

pixels
 

is
 

extracted
 

and
 

refined
 

through
 

the
 

process
 

described
 

above,
 

and
 

P2CS-
Net

 

improves
 

the
 

overall
 

accuracy
 

of
 

segmentation.
 

In
 

addition,
 

P2CS-Net
 

self-integrates
 

pseudo-labels
 

by
 

utilizing
 

an
 

exponential
 

moving
 

average
 

method.
 

This
 

approach
 

further
 

improves
 

the
 

model's
 

capacity
 

to
 

utilize
 

semantic
 

information
 

while
 

improving
 

the
 

pseudo- labels.
 

Three
 

publicly
 

available
 

datasets
 

of
 

breast
 

ultrasound
 

images
 

are
 

used
 

to
 

conduct
 

a
 

comprehensive
 

experimental
 

evaluation
 

of
 

P2CS-Net.
 

The
 

experimental
  

results
 

show
 

that
 

the
 

P2CS-Net
 

algorithm
 

performs
 

well
 

in
 

various
 

indicators
 

compared
 

to
 

other
 

semi - supervised
 

learning
 

ultrasound
 

segmentation
 

methods,
 

even
 

with
 

a
 

training
 

set
 

that
 

contained
 

only
 

20%
 

to
 

30%
 

annotated
 

data.
 

Furthermore,
 

P2CS-Net
 

performs
 

comparably
 

to
 

classical
 

fully
 

supervised
 

medical
 

image
 

segmentation
 

algorithms,
 

even
 

though
 

it
 

was
 

only
 

trained
 

on
 

a
 

small
 

amount
 

of
 

annotated
 

data.
 

The
 

experimental
 

results
 

mentioned
 

above
 

demonstrate
 

the
 

reliability
 

and
 

effectiveness
 

of
 

P2CS-Net
 

for
 

segmenting
 

breast
 

ultrasound
 

images.
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0　 引　 言

目前,根据世界卫生组织国际癌症研究机构发

布的数据显示,乳腺癌已成为女性发病率与致死率

最高的疾病[1] ,因此乳腺癌的早期防治具有重大意

义。 而乳腺超声成像由于其无创性、无放射性成为

乳腺癌早期防治的主要手段之一[2-3] 。 使用计算机

辅助乳腺超声图像分割可以帮助医生准确识别病灶

区域,是一种提高乳腺癌诊断效率的重要手段[4-5] 。
早期的乳腺超声图像分割方法主要依赖手工提取的

图像特征,如基于阈值、基于分水岭等方法[6] ,但大

多都难以获得准确的分割结果。
近年来,深度卷积神经网络的发展极大地推动

了乳腺超声图像分割的研究进步[7] 。 Ronneberger
等学者[8-9]提出 U-Net 架构,由于其独特的编码器-
解码器架构和跳跃连接,有效提高了分割任务中的

特征传播和边缘检测能力。 在 U-Net 之后,相继提

出了基于编解码器结构的多种改进模型[10] ,以适应

乳腺超声图像的特点。 Shareef 等学者[11] 提出的

STAN 网络通过改进特征融合机制,有效地整合了

不同尺度的特征信息,尤其在小肿瘤分割任务中展

现了优异的性能。 Ning 等学者[12] 提出了一种形态

感知网络,通过结合乳腺超声图像中的低级和高级

特征生成显著图,有效地提升了网络分割性能和鲁

棒性。
全监督模型在乳腺超声图像分割任务中虽性能

优异,但依赖高成本的数据标注。 由于乳腺超声图

像含有多种背景噪声、肿瘤边缘模糊、对比度低及患

者个体差异显著,导致手动标注耗时且昂贵,限制了

模型泛化能力和性能提升。 为解决这一问题,半监

督学习成为有效策略。 通过结合有监督和无监督学

习,利用少量标注数据和大量无标注数据训练模型,
减少人工干预,缓解数据标注压力[13-15] ,已成为医

学图像分割领域的重要研究方向[16] 。
在医学图像分割领域,研究者们已经开发出多

种有效的基于半监督学习的网络架构。 Huang 等学

者[17]
 

等人提出一种深度主动学习框架,通过特征聚

类和图像熵技术精选初始标记集,结合医生标注与

未标注数据训练模型,获得了与全监督模型相近的

分割性能。 Xu 等学者[18]
 

采用学生-教师网络架构

提出 SCO-SSL 方法,通过最小化两个网络的输出一

致性损失实现正则化,在标注数据占比仅 20%时仍

展现出良好性能。 郭敏等学者[19]
 

提出 TCA-Net,融
合注意力机制,通过在学生模型的概率映射与教师

模型的伪标签之间添加一致性约束,有效提升了分

割性能。
半监督学习方法在医学图像分割领域展现出巨

大潜力,但面临诸多挑战。 结合先验知识的方法虽能

提高模型理解能力,但不完全的先验可能导致错误信

息;一致性半监督学习、如 SCO-SSL 与 TCA-Net,通
过正则化利用未标注数据结构,但未标注数据的噪声

可能影响模型性能,且模型复杂度较高[20] 。
带有伪标签的半监督学习方法可以很好地克服

这些限制,在减少对完全标注数据依赖的同时,避免

了先验知识偏差和未标注数据噪声的不利影响,为
医学图像分割领域开辟了新的研究方向和应用潜

力。 然而,在带有伪标签的半监督学习方法中,基于

有限标注数据训练的模型可能无法完全捕捉数据分

布,导致生成的伪标签含有噪声,进而影响模型的训

练稳定性[21] 。 针对这一挑战,Guo 等学者[22] 提出

了一种联合类亲和分割框架,结合像素级和成对级

亲和关系对伪标签的部分高置信度像素进行噪声抑

制,配合类亲和损失矫正策略,进一步提升模型分割

精度与鲁棒性。 此外,Shi 等学者[23] 提出一种创新

的保守-激进复合网络架构,其中保守网络倾向于

将像素分类为背景,而激进网络则倾向于分类为前

景。 对于无标注数据,该方法将 2 个网络共同预测

的交集区域即高置信度像素用来生成伪标签。 尽管

这些方法在处理伪标签噪声方面取得了进展,但却

只关注了伪标签中被认为是高置信度的部分,而忽

略了低置信度像素中同样有价值的语义信息[24] 。
在带有伪标签的半监督学习中,伪标签的质量

同样会对后续模型的训练产生重要影响。 Yao 等学

者[25]为提高伪标签质量,提出置信度感知交叉双监

督网络架构,通过傅里叶变换和 KL 散度优化提升

伪标签质量,在医学图像分割任务中表现了良好的

泛化性。 Li 等学者[26] 通过引入由简单线性迭代聚

类(SLIC)算法[27]得到的超像素图,对伪标签加以进

一步细化[28]来获得置信度更高的伪标签进行后续

训练。 Wang 等学者[29] 添加了一个信任模块来重新

评估模型输出中的伪标签,并设置阈值来选择置信

度更高的伪标签。 以上方法虽然提高了伪标签的质

量,但每次迭代训练的最终伪标签与标注数据合并

进行单次训练后便被抛弃,导致潜在有用语义信息

一同丢失。
针对伪标签语义信息利用不足的问题,本文提

出了一种新颖的伪标签像素级分类自集成网络

(P 2CS-Net)。 该方法首先利用初始分割模型训练
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不充分的特性,生成有差异的伪标签并对其进行像

素分类,改进以往只关注高置信度像素的不足。 对

于低置信度像素,通过噪声转移矩阵进行伪标签矫

正来挖掘并利用这些像素中的潜在语义信息。 然

后,将矫正后的低置信度像素与高置信度像素级联

融合,生成新的伪标签。 接着,将这个新生成的伪标

签与上一轮迭代的最终伪标签进行自集成,以此增

强模型对语义信息的捕捉能力。 通过上述过程,
P 2CS-Net 能够有效地整合伪标签中丰富的语义信

息,最终生成准确的分割结果。

1　 本文方法

本文提出了一种伪标签像素级分类自集成方法

( Pseudo - Label
 

Pixel
 

Classification
 

Self - Integrated
 

Network,
 

P 2CS-Net),其整体框架如图 1 所示。 该

方法包括有监督学习部分与无监督学习部分,采用

ResNet50 作为基线网络。 有监督学习部分接受少

量带标注数据作为输入,由基线网络输出相应预测

结果,计算预测输出与输入数据相应标注的损失 Ls

进行有监督训练,得到初始分割模型 f 。 无监督学

习部分将 f 复制得到 f1 和 f2 作为分割网络,接受大

量无标注数据作为输入,输出伪标签 P i
1 和 P i

2。 本

文设 计 像 素 级 分 类 及 矫 正 策 略 ( Pixel
 

Level
 

Classification
 

and
 

Correction
 

Strategy,
 

PLCC),对 P i
1

和 P i
2 进行像素分类,得到高置信度像素集 Ahc 与低

置信度像素集 Alc, 对 Alc 通过噪声转移矩阵进行矫

正,矫正后的低置信度像素集 A′
lc 与高置信度像素集

Ahc 进行级联融合得到融合后的伪标签
 

。 此外,本
文还设计了基于 EMA 的伪标签自集成策略(EMA-
based

 

Pseudo-label
 

self-integration
 

Strategy,
 

EPS),

将融合后的伪标签 Ẑ i
t 与前一次迭代训练中的最终

伪标签进行自集成后得到当前次迭代训练的最终伪

标签 Z i
t, 接着与原超声图像进行数据合并继续迭

代,在迭代训练中不断更新分割网络,获得最终的分

割结果。

Dl

Du

f2

f1

f

Ls

Groundtruth

PLCC
P1

i

P2
i

Ahc

Alc

Tc

A′
lC

L2

Zi
t̂

L1

Lc

Zi
t

Cascade Pixelclassification

Output ResNet50

Combining
data

EMA-BasedPseudo-labelSelf-integrationStrategy

Pixellevelclassificationandcorrectionstrategy

图 1　 P2CS-Net 整体架构

Fig.
 

1　 Diagram
 

of
 

P2CS-Net
 

network
 

structure

1. 1　 概述

定义带标注数据集 Dl = {(xi
l,yi

l)} 以及无标注

数据集 Du = {(xi
u,yi

u)}, 有标注数据 Dl 首先作为输

入进行有监督训练,定义有监督学习部分输出为

f(xi
l;θ), 其中 f(·) 为分割模型,即初始分割模型。

对于每个带标注图像,本文采用交叉熵损失函数作

为有监督学习部分的目标函数,定义公式为:

Ls =
1

| Dl |
∑

(xil,y
i
l)∈Dl

lce( f(xi
l;θ),yi

l) (1)

　 　 其中, yi
l 表示第 i 张带标注图像的真实掩码。

交叉双监督网络机制 ( Cross
 

Pseudo
 

Super -
vision,

 

CPS) [30]在自然图像半监督语义分割任务中

表现良好。 该机制使用 2 个分割网络,通过添加约

束使得 2 个模型产生相互一致的输出,这一过程不

仅增强了网络对未标注数据的预测能力,并且能够

生成高质量的伪标签,进而优化网络模型。
本文采用 CPS 网络机制,复制初始分割模型得

到 f1(·) 和 f2(·) 作为无监督部分的 2 个分割网络,
均接受无标注的数据集 Du 作为输入,输出预测结果

f1(xi
u;θ) 和 f2(xi

u;θ), 即 P i
1 和 P i

2。 并且由于初始

分割模型由少量带标注数据训练得到,因此 P i
1 和

P i
2 是 2 个具有差异的预测输出。

对于每个无标注数据,无监督损失 Lu 包括 2 部

分,即通过 2 个分割模型 f1(·) 和 f2(·) 生成的预测
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输出 P i
1 和 P i

2, 与对应图像的最终伪标签计算损失

值 L1、L2, 具体公式如下:

L1 = 1
| Du |

∑
(xiu,Pi

1)∈Du

lce( f1(xi
u;θ),Z i

t) (2)

L2 = 1
| Du |

∑
(xiu,yli)∈Du

lce( f2(xi
u;θ),Z i

t) (3)

Lu = L1 + L2 (4)
　 　 其中, Z i

t 表示第 i个无标注图像的最终伪标签。
使用对比损失 Lc 来充分利用低置信度像素,可由下

式计算得到:

　 Lc = - 1
C × M∑

C-1

c = 0
∑
M

i = 1
log

e〈aci,
 

a+ci〉 / τ

e〈aci,
 

a+ci〉 / τ + e〈aci,
 

a-ci〉 / τ

é

ë

ê
ê

ù

û

ú
ú

(5)

　 　 其中, M表示低置信度像素集中像素的总数; C
表示低置信度像素集中像素属于的类别、即背景区

域或病灶区域; aci 表示类别 c 的第 i 个像素; a +
ci 和

a -
ci 分别表示第 i 个像素的正样本与负样本; 〈·,·〉

表示像素特征之间的余弦相似性,其范围限制在-1
到+1 之间; τ 表示对比损失中的温度超参数,本文

设置 τ = 0. 5。
因此本文总体的损失函数计算公式具体如下:

L = Ls + Lu + Lc (6)
1. 2　 伪标签像素分类及矫正策略

在传统的伪标签矫正方法中,研究者们主要集

中于高置信度像素,而往往忽视了低置信度像素中

蕴含的丰富语义信息。 低置信度像素示例如图 2 所

示,由于乳腺超声图像中的噪声和阴影,某些像素

(如十字标识的位置)在归类为肿块或背景时存在

不确定性,即被视为低置信度。 这些像素实际上对

于精确地分割出病灶边缘极为关键。 针对这一问

题,本文设计像素级分类及矫正策略( Pixel
 

Level
 

Classification
 

and
 

Correction
 

strategy,
 

PLCC),旨在更

有效地挖掘和利用低置信度像素中的潜在信息。

图 2　 低置信度像素示例

Fig.
 

2　 Example
 

of
 

low
 

confidence
 

pixel

　 　 本文将着重挖掘伪标签中低置信度像素对预测

结果的影响。 由 2 个分割模型 f1(·)、
    

f2(·) 得到的

预测输出 P i
1 和 P i

2、 即伪标签,计算 2 个伪标签中每

个像素的概率分布交叉熵对其进行像素级分类,交

叉熵 H(·) 计算公式为:

H(p1,p2) = - ∑
x∈Pi

1

p1(x)log(p2(x)) (7)

　 　 其中, x 表示伪标签中的像素, p1(x)、p2(x) 分

别表示 P i
1 和 P i

2 中像素 x 的概率分布。
然后,对交叉熵设置阈值 ∂t 进行伪标签像素级

分类,将交叉熵小于阈值的像素归为高置信度像素集

Ahc, 反之则为低置信度像素集 Alc, 计算公式如下:

yij =
yij ∈ Ahc,

 

if
 

H(p1,p2) < ∂t

yij ∈ Alc,
 

otherwise{ (8)

　 　 其中, yij 表示第 j 个伪标签在位置 i 处的像素。
设置初始阈值 ∂0 = 0. 3, 并且在训练过程中,伪标签

逐渐趋于准确[24] ,因此本文使用线性策略来调整阈

值的大小,即:

∂t = ∂0· 1 - E - t
E( ) (9)

　 　 其中,
 

E 表示当前迭代训练次数, t 表示迭代训

练预设总次数。
通过上述过程, P i

1 和 P i
2 中的像素被分为 2 组,

即高置信度像素集与低置信度像素集。 其中,高置

信度像素集包括 2 个预测输出中具有高度一致性的

像素,直接用作生成伪标签。 相对地,低置信度像素

集则包括预测结果间差异显著的像素,这一集合不

仅包含了那些归属不明确的像素,也包括了噪声引

起的误差,进而影响模型的分割性能[31] 。
在医学图像分割领域,像素级噪声标签的处理

尚未得到充分的研究和利用[32] 。 应用噪声转移矩

阵(Noise
 

Transfer
 

Matrix,
 

NTM) [33-34] 是现有解决方

案中的一种有效方法。 NTM 的核心思想在于模拟

标签噪声的传播模式建模,并通过建立好的模型对

像素级噪声标签进行矫正。 该方法有助于提升分割

模型的鲁棒性,并增强了模型对目标区域的准确分

割能力。
本文为了更有效地利用像素级分类后的低置信

度像素集 Alc, 使用 NTM 矩阵 TM(m,n) 对 Alc 进行

噪声建模及矫正。 其建模过程可用下式来描述:

p Âlc = n( ) = ∑
M

m = 1
p(Alc = m)·TM(m,n) (10)

　 　 其中, p Âlc = n( ) 表示 Alc 中的像素 m 通过

NTM 从当前类别转换为另一个类别,即转换为噪声

n 的预测概率; Âlc 表示 Alc 经过 NTM 进行建模得到

的噪声分布; p(Alc) 表示 Alc 中像素 m 的概率分布。

接着,利用建模好的噪声分布 Âlc 对 Alc 中的像
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素 m 进行矫正,其矫正损失函数定义公式如下:

LN = - ∑
M

m
Âlc(n)log[p(Alc = m)TM] (11)

　 　 经过上述过程得到矫正后的低置信度像素集

Alc
′, 将 Alc

′ 与高置信度像素集 Ahc 级联融合得到 Z
^
i
t,

进行后续的伪标签自集成过程。
1. 3　 伪标签自集成策略

在传统的带有伪标签的半监督学习中,每次迭

代后生成的伪标签在数据合并后通常立即被舍弃。
然而这些伪标签往往蕴含着丰富的语义信息可供模

型进一步学习[26] 。
指数平均移动 ( Exponential

 

Moving
 

Average,
EMA) [35]是一种可以给予最近数据更高权重的平均

方法,能够更快速地反映数据最近的变化趋势,有助

于减少训练过程中的噪声,提高模型的泛化能力。
因此,为了更深入地挖掘并利用被抛弃的潜在

语义信息,本文提出一种基于 EMA 的伪标签自集成

策略 ( EMA - based
 

Pseudo - label
 

Self - integration
 

strategy,
 

EPS)。 该策略将迭代过程中产生的伪标

签通过指数平均移动机制进行整合,而非直接丢弃,
实现对这些伪标签中蕴含的语义信息的充分利用,
提高模型分割性能的目的。

首先,在第 t 次迭代训练中,通过 PLCC 得到伪

标签 Ẑ i
t, 然后将其与第 t - 1 次迭代训练中的最终

伪标签 Z i
t -1 通过 EPS 策略进行加权融合,更新最终

伪标签 Z i
t, 其更新过程如下式所示:

Z i
t = ωZ i

t -1 + (1 - ω~ ) Ẑ i
t (12)

　 　 其中, ω 表示集成过程中伪标签的权重, Z i
t 初

始化为零矩阵。
 

ω 的值随着迭代训练次数的增加而

动态地减小,直到接近常数 1。 因此,随着训练过程

的继续,靠后生成的伪标签所占权重逐渐加大,伪标

签的准确度也随之不断增加。
在每次迭代中,将经过自集成策略优化的伪标

签与原始超声图像数据合并,以此作为下一次迭代

训练的输入。 这一过程重复进行,直到满足预设的

迭代次数或迭代停止条件。 在最终迭代完成后,所
产生的伪标签即为乳腺超声图像的分割结果。

2　 实验结果与分析

2. 1　 实验设置

本文使用 3 个公开的乳腺超声图像数据集

Dataset
 

BUSI[36] 、Dataset
 

B[37] 和 Dataset
 

C[38] 进行实

验验证。 Dataset
 

BUSI 收集了 600 名 25 ~ 75 岁的女

性患者乳腺超声图像共 730 张,其中包括 487 张恶

性病变图像、110 张良性病变图像以及 133 张正常

超声图像,图像平均大小为 500×500 像素。 Dataset
 

B 包含不同患者的乳腺超声图像共 163 张,包括 110
张良性病变图像以及 53 张恶性病变图像,图像平均

大小为 760×570 像素。 Dataset
 

C 包含乳腺超声图

像共 320 张,其中包括 160 张良性病变图像以及 160
张恶性病变图像,图像平均大小为 128 × 128 像素。
由于本文的目标是从乳腺超声图像中进行肿块区域

的分割,因此将 Dataset
 

BUSI 中 130 张正常的图像

予以删除,最终 Dataset
 

BUSI 共 647 张图像进行后

续的实验。
在本实验中,对图像数据及其对应的真实掩码

进行了尺寸调整,统一裁剪至 224 × 224 像素。 此

外,由于医学图像数据集规模较小,为增强模型的泛

化能力,采用数据增广技术。 具体而言,对每张图像

数据施加了逆时针 90°和 180°的旋转操作,并对旋

转后得到的图像及其原图执行了镜像翻转。 通过这

些方法,有效扩充了 3 个数据集的规模,为后续实验

提供了更丰富的训练样本。
本文实验使用 Pytorch

 

1. 11. 0 为基本框架,使
用一张型号为 NVIDIA

 

GeForce
 

RTX
 

4090 的显卡进

行训练, 使用 Adam 优化方法进行优化, 实验中

batch
 

size 设置为 16。 初始学习率设置为 η =10 -3,
为节约模型收敛时间,学习率按照如下规则进行衰

减:若实验中 10 次迭代训练后优化目标函数值未发

生改善,则学习率下降 0. 9 倍;若 20 次迭代训练后

优化目标函数值未发生改善,则停止训练。 实验采

用 5 倍交叉验证进行,迭代训练最大值设置为 200
次。 本文模型部署及后续对比实验与消融实验均在

上述设置下进行。
为验证 P 2CS -Net 的有效性,在与半监督算法

和全监督算法的对比实验以及消融实验中使用骰子

系数( Dice) 以及杰卡德相似系数 ( Jaccard
 

Index,
JI) [39]作为评价指标;在数据集定量测试中使用骰

子系数(Dice)作为评价指标。 其中,Dice 表示实际

和预测分割结果重叠的程度,杰卡德相似系数表示

实际和预测分割结果之间的相似性。 所有的评价指

标均以均值的形式进行表示,计算公式具体如下:

Dice = 2(pre ∩ act)
(pre ∪ act)

(13)

JI = pre ∩ act
pre ∪ act

(14)
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　 　 其中,
 

pre 表示迭代训练停止时的最终伪标签、
即分割结果,act 表示乳腺超声图像对应的真实标注。
2. 2　 与其他半监督方法对比实验

为说明本文提出的 P 2CS-Net 在半监督乳腺超

声图像分割任务中的优势,本文选择 2 个半监督超

声图像分割模型 SABR[40] 以及 SCO-SSL 进行对比

实验,部分分割结果对比如图 3 所示。

(a)原图

(b)Groundtruth

(c)SABR

(d)SCO

(e)P2CS-Net

图 3　 不同半监督方法分割结果对比

Fig.
 

3 　 Comparison
 

of
 

segmentation
 

results
 

of
 

different
 

semi -

supervised
 

learning
 

algorithms

　 　 SCO-SSL 通过阴影增强与丢弃机制处理阴影

伪影,但因细节信息处理不足,导致病灶区域边缘分

割效果欠佳。 SABR 结合 Transformer 设计阴影掩盖

模块,提升了模型对边缘信息的细化能力,边缘分割

更为清晰,但阴影掩盖模块模拟超声图像阴影生成

自适应掩码时,易引入误分割问题。 P 2CS-Net 利用

2 个分割网络生成伪标签互相监督,充分挖掘语义

信息,实现了更准确的边缘分割且避免了误分割。
不过,对于伪影严重的超声图像,P 2CS-Net 生成的

伪标签噪声较大,影响了网络对边缘信息的准确提

取,进而影响分割精度和结果完整性。
　 　 P 2CS-Net 与其他半监督模型在 3 个数据集上

的定量对比结果见表 1。 根据表 1 中结果可知,
P 2CS-Net 各评价指标在 Dataset

 

C 上提升最为显

著,最多达到了 4. 48%和 2. 50%。 在 Dataset
 

B 上,
P 2CS-Net 获得了 3 个数据集中最高的 Dise 和 JI,分
别为 85. 32%与 75. 39%,其提升效果同样显著,分
别最多提升了 3. 04% 和 2. 82%。 在 Dataset

 

BUSI
上,P 2CS-Net 的 Dice 值和 JI 值分别达到 84. 52%和

75. 19%,最多提升了 3. 9%和 2. 66%。

表 1　
 

不同半监督方法在 3 个数据集上的结果

Table
 

1　 Results
 

of
 

different
 

semi-supervised
 

algorithms
 

on
 

three
 

datasets %

Dataset Method Dice JI

Dataset
 

BUSI SCO-SSL 80. 62 72. 53
SABR 82. 16 73. 72

P2 CS-Net 84. 52 75. 19
Dataset

 

B SCO-SSL 82. 28 72. 57
SABR 83. 53 73. 83

P2 CS-Net 85. 32 75. 39
Dataset

 

C SCO-SSL 79. 31 70. 71
SABR 82. 14 71. 69

P2 CS-Net 83. 79 73. 21

2. 3　 全监督方法对比实验

为进一步验证本文网络架构的有效性,以及充

分展示 P 2CS-Net 的潜力,本节将 P 2CS-Net 与 5 种

经典全监督医学图像分割网络进行对比分析,其分

割结果对比如图 4 所示。

(a)原图

(b)Groundtruth

(c)U-Net

(d)AttentionU-Net

(e)TransU-Net

(f)DenseU-Net

(g)SKU-Net

(h)P2CS-Net

图 4　 不同全监督方法分割结果对比

Fig.
 

4 　 Comparison
 

of
 

segmentation
 

results
 

of
 

different
 

fully
 

supervised
 

model

　 　 U-Net 通过跳跃连接融合浅层语义信息,有效

改善梯度消失和特征损失问题。 Trans
 

U-Net 结合
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Transformer 和 U-Net 架构,利用自注意力机制增强

特征提取能力,捕捉全局上下文信息,但细节信息丢

失导致边缘分割精度不足。 Attention
 

U-Net 在跳跃

连接中引入注意力机制,提升对目标区域的关注度,
但在小目标和伪影区域分割效果有限。 Dense

 

U -
Net 采用密集块代替传统卷积块,加强全局信息整

合,但局部特征处理易产生冗余信息。 SK
 

U-Net 在
编码器中添加挤压和激励残差模块,在解码器中引

入选择性内核模块,有效抑制冗余特征,但在小目标

分割中抑制不足。 P 2CS-Net 作为一种半监督学习

方法,在乳腺超声图像分割任务中展现出了与全监

督模型相当、 甚至更佳的分割性能。 然而, 在

Dataset
 

BUSI 和 Dataset
 

B 中,由于超声图像分割目

标大小不一,伪标签矫正过程未能充分消除噪声影

响,导致 P 2CS-Net 的分割结果不够完整。
P 2CS-Net 与经典全监督模型在 3 个数据集上

的定量对比结果见表 2。 根据表 2 中结果可知,在
Dataset

 

BUSI 上,尽管 P2CS-Net 的 Dice 略低于 Trans
 

U-Net,但差距并不明显、仅为 0. 28%,并且 JI 至少提

升了 2. 04%。 在 Dataset
 

C 上,相较其他全监督方法

各评价指标至少提升了 3. 08%和 1. 89%,这一结果凸

显了 P2CS - Net 在该数据集上的显著优势。 在

Dataset
 

B 上 P2CS-Net 相较大多数全监督算法表现

出了显著优势,提升效果明显,尽管 Dice 较 Trans
 

U-
Net 低 0. 59%,JI 低 0. 23%,但差异并不明显。

表 2　 不同全监督方法在 3 个数据集上的结果

Table
 

2 　 Results
 

of
 

different
 

fully
 

supervised
 

algorithms
 

on
 

three
 

datasets %

Dataset Method Dice JI

Dataset
 

BUSI U-Net 75. 45 64. 38
Trans

 

U-Net 84. 80 73. 15
Attention

 

U-Net 75. 09 65. 42
Dense

 

U-Net 71. 15 64. 05
SK

 

U-Net 76. 35 66. 64
P2 CS-Net 84. 52 75. 19

Dataset
 

B U-Net 77. 83 68. 66
Trans

 

U-Net 85. 91 76. 52
Attention

 

U-Net 76. 01 67. 93
Dense

 

U-Net 71. 37 62. 37
SK

 

U-Net 78. 15 70. 63
P2 CS-Net 85. 32 75. 39

Dataset
 

C U-Net 72. 13 63. 03
Trans

 

U-Net 80. 71 71. 32
Attention

 

U-Net 75. 25 68. 72
Dense

 

U-Net 74. 42 65. 79
SK

 

U-Net 75. 63 67. 91
P2 CS-Net 83. 79 73. 21

2. 4　 消融实验

本节对 P 2CS -Net 进行消融实验,来验证本文

所提出的每个策略的有效性。 消融实验包括以下 2
个对比方法。

(1)
 

PC
 

CPS:PC
 

CPS 通过在交叉双监督网络

结构 CPS 中增加像素级分类及矫正策略,充分利用

并矫正低置信度像素,将级联融合后的像素集作为

最终伪标签进入下一次迭代训练。
(2)

 

SE
 

CPS:SE
 

CPS 直接级联融合 2 个模型生

成的伪标签,并与前一次迭代的伪标签自集成,作为

当前迭代的最终伪标签。
消融实验部分分割结果如图 5 所示。 由图 5 可

知,PS
 

CPS 与 SE
 

CPS 因对伪标签语义信息利用不

足,分割结果不完整,SE
 

CPS 甚至出现明显误分割。
而 P2CS-Net 结合两者优势,充分利用伪标签中的

有用信息,获得了更接近 Ground
 

truth 的分割结果。

(a)原图

(b)Groundtruth

(c)PSCPS

(d)SECPS

(e)本文

图 5　 消融实验分割结果

Fig.
 

5　 Segmentation
 

results
 

of
 

ablation
 

experiments

　 　 表 3 为 3 个数据集上的定量消融实验结果。 由

表 3 中结果可知,本文采用交叉双监督网络机制,结
合伪标签像素分类及矫正策略与伪标签自集成策略

所提出的分割方法 P 2CS-Net,在 3 个数据集上相较

另 2 个消融网络各指标均表现出了显著的性能提

升,证明了本文所提出的 2 个策略的有效性。
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表 3　 3 个数据集上的消融实验结果

　 Table
 

3　 Results
 

of
 

ablation
 

experiments
 

on
 

three
 

datasets %

Dataset Method Dice JI

Dataset
 

BUSI PC
 

CPS 82. 34 72. 98
SE

 

CPS 79. 65 70. 18
P2 CS-Net 84. 52 75. 19

Dataset
 

B PC
 

CPS 84. 15 74. 52
SE

 

CPS 80. 68 71. 61
P2 CS-Net 85. 32 75. 39

Dataset
 

C PC
 

CPS 80. 33 71. 67
SE

 

CPS 76. 59 66. 91
P2 CS-Net 83. 79 73. 21

2. 5　 数据集定量测试

本节实验展示了本文模型在不同带标注数据样

本量中的表现。 根据 2. 2 节的介绍,本文在训练时

需要有差异的伪标签来进行后续的操作,因此将带

标注数据量设置在 50%以下进行实验。 具体而言,
本文 对 数 据 集 按 以 下 5 种 比 例 划 分, 分 别 为

10 ∶ 90,20 ∶ 80,30 ∶ 70,40 ∶ 60 及 50 ∶ 50,监督学

习模型采用 ResNet50 作为基线网络,使用 Dice 损

失作为评价指标,在 3 个数据集上的实验结果见

表 4。
观察表 4 可知, P 2CS - Net 在 Dataset

 

BUSI 与

Dataset
 

C 上,数据集中参与有监督学习模型训练的

带标注数据占比 20%时分割效果最佳。 而 Dataset
 

B 由于数据规模相对较小,在带标注数据占比 30%
时达到最佳的分割效果。 并且可以看出带标注数据

占比较大时,Dice 反而更小,这证实了 P 2CS-Net 在
无监督学习部分利用不准确的分割网络模型生成有

差异的伪标签,并且通过 PLCC 与 EPS 对伪标签进

行语义信息挖掘的有效性。

表 4　
 

有监督学习数据参与量对比

Table
 

4　 Comparison
 

of
 

supervised
 

learning
 

data
 

participation %
 

Dataset Labeled Unlabeled Dice

Dataset
 

BUSI 10 90 82. 61
20 80 84. 52
30 70 80. 63
40 60 75. 68
50 50 72. 86

Dataset
 

B 10 90 81. 21
20 80 81. 34
30 70 85. 32
40 60 76. 04
50 50 71. 38

Dataset
 

C 10 90 81. 06
20 80 83. 79
30 70 79. 47
40 60 77. 72
50 50 70. 41

3　 结束语

本文提出了一种用于乳腺超声图像分割的伪标

签像素级分类自集成网络 P 2CS-Net。 该网络聚焦

于伪标签中的低置信度像素及迭代训练中被抛弃的

伪标签,通过充分利用这些以往被忽视的语义信息,
生成更准确的伪标签,从而训练出性能更佳的分割

模型。 与传统全监督方法相比,P 2CS-Net 显著减少

了数据标注的时间和人力成本,同时保持了与全监

督方法相当的分割性能。 此外,P 2CS-Net 在与其他

半监督方法的对比中展现出优势,通过深入挖掘低

置信度像素中的语义信息,并有效利用迭代训练中

产生的伪标签,分割性能也得到了明显提升。 实验

在 3 个公开数据集上验证了该方法的有效性。 未来

研究将致力于提高伪标签的置信度,以节省模型训

练的计算成本并进一步提升分割准确性。

参考文献

[1]
      

SUNG
 

H,
 

FERLAY
 

J,
 

SIEGEL
 

R
 

L,
 

et
 

al.
 

Global
 

cancer
 

statistics
 

2020:
 

GLOBOCAN
 

estimates
 

of
 

incidence
 

and
 

mortality
 

worldwide
 

for
 

36
 

cancers
 

in
 

185
 

countries [ J] .
 

CA: A
 

Cancer
 

Journal
 

for
 

Clinicians,
 

2021,
 

71(3):
 

209-249.
[ 2 ]

 

WU
 

Gege,
 

ZHOU
 

Liqiang,
 

XU
 

Jianwei,
 

et
 

al.
 

Artificial
 

intelligence
 

in
 

breast
 

ultrasound[J] .
 

World
 

Journal
 

of
 

Radiology,
 

2019,
 

11(2):
 

19-26.
 

[3]
 

XIAN
 

Min,
 

ZHANG
 

Yingtao,
 

CHENG
 

H
 

D,
 

et
 

al.
 

Automatic
 

breast
 

ultrasound
 

image
 

segmentation:
 

A
 

survey [ J ] .
 

Pattern
 

Recognition,
 

2018,
 

79:
 

340-355.
 

[4]
 

CLEMENT
 

G
 

T,
 

HYNYNEN
 

K.
 

A
 

non - invasive
 

method
 

for
 

focusing
 

ultrasound
 

through
 

the
 

human
 

skull [ J ] .
 

Physics
 

in
 

Medicine
 

&
 

Biology,
 

2002,
 

47(8):
 

1219-1236.
 

[5]
 

SAMULSKI
 

M
 

R
 

M,
 

SNOEREN
 

P
 

R,
 

PLATEL
 

B,
 

et
 

al.
 

Computer - aided
 

detection
 

as
 

a
 

decision
 

assistant
 

in
 

chest
 

radiography
 

[C] / / Proceedings
 

of
 

Medical
 

Imaging
 

2011:
 

Image
 

Perception.
 

San
 

Francisco:
 

SPIE,
 

2011:
 

338.
 

[6]
 

AZAD
 

R,
 

AGHDAM
 

E
 

K,
 

RAULAND
 

A,
 

et
 

al. Medical
 

image
 

segmentation
 

review:
 

The
 

success
 

of
 

U - Net [ J ] .
 

IEEE
 

Transaction
 

on
 

Pattern
 

Analysis
 

and
 

Machine
 

Intelligence,
 

2024,
 

46:
 

10076-10095.
[7]

 

邬迎节,
 

李春树.
 

乳腺癌超声图像分割算法研究[J] .
 

宁夏工程

技术,
 

2024,
 

23(1):
 

73-78.
 

[ 8 ]
 

RONNEBERGER
 

O,
 

FISCHER
 

P,
 

BROX
 

T.
 

U - Net:
 

convolutional
 

networks
 

for
 

biomedical
 

image
 

segmentation[C] / /
Proceedings

 

of
  

the
 

18th
 

International
 

Conference
 

on
 

Medical
 

Image
 

Computing
 

and
 

Computer-Assisted
 

Intervention(MICCAI
 

2015) .
 

Cham:
 

Springer,
 

2015:
 

234-241.
 

[9]
 

ÇIÇEK
 

Ö,
 

ABDULKADIR
 

A,
 

LIENKAMP
 

S
 

S,
 

et
 

al.
 

3D
 

U-
Net:

 

learning
 

dense
 

volumetric
 

segmentation
 

from
 

sparse
 

annotation
 

[C] / /
 

Proceedings
 

of
  

the
 

19th
 

International
 

Conference
 

on
 

Medical
 

Image
 

Computing
 

and
 

Computer-Assisted
 

Intervention
(MICCAI

 

2016) .
 

Cham:
 

Springer,
 

2016:
 

424-432.
 

[10]袁琳,张雨,丁炎,等.
 

基于优化 U-Net 神经网络模型在乳腺肿

8 智　 能　 计　 算　 机　 与　 应　 用　 　 　 　 　
 

　
 

　 　
 

　
 

　 　 　 　 　 第 15 卷　



瘤超声图像分割中的应用[ J] .
 

医学影像学杂志,
 

2023,
 

33
(6):

 

1081-1085.
[11]SHAREEF

 

B,
 

XIAN
 

Min,
 

VAKANSKI
 

A.
 

Stan:
 

Small
 

tumor-
aware

 

network
 

for
 

breast
 

ultrasound
 

image
 

segmentation
 

[ C] / /
Proceedings

 

of
 

2020
 

IEEE
 

17th
 

International
 

Symposium
 

on
 

Biomedical
 

Imaging
 

(ISBI).
 

Piscataway,
 

NJ:
 

IEEE,
 

2020:
 

1-5.
[12] NING

 

Zhenyuan,
 

ZHONG
 

Shengzhou,
 

FENG
 

Qianjin,
 

et
 

al.
 

SMU-Net:
 

Saliency-guided
 

morphology-aware
 

U-Net
 

for
 

breast
 

lesion
 

segmentation
 

in
 

ultrasound
 

image[ J] .
 

IEEE
 

Transactions
 

on
 

Medical
 

Imaging,
 

2021,
 

41(2):
 

476-490.
[13]罗毅恒,张俊华,张剑青.

 

交换标签部分和交叉监督的半监督医

学图像分割[J] .
 

计算机工程与应用,
 

2025,61(4):
 

253-261.
 

[14]李飞翔,降爱莲.
 

MSMVT:多尺度和多视图 Transformer 半监督

医学图像分割框架[ J] .
 

计算机工程与应用,
 

2025,61
 

( 2):
 

273-282
 

.
[15]李明漾,王庆凤,陈立伟,

 

等.
 

基于跨任务一致性的半监督肝脏

CT 图像分割[J] .
 

计算机技术与发展,
 

2024,
 

34(2):
 

65-70.
[16]李才子,

 

刘瑞强,
 

司伟鑫,
 

等.
 

面向心脏 MRI 分割的半监督空

间一致性约束网络[J] .
 

计算机辅助设计与图形学学报,
 

2020,
 

32(7):
 

1145-1153.
[17] HUANG

 

Kuan,
 

HUANG
 

Jianhua,
 

WANG
 

Weichen,
 

et
 

al.
 

A
 

deep
 

active
 

learning
 

framework
 

with
 

information
 

guided
 

label
 

generation
 

for
 

medical
 

image
 

segmentation
 

[C] / / Proceedings
 

of
 

2022
 

IEEE
 

International
 

Conference
 

on
 

Bioinformatics
 

and
 

Biomedicine.
 

Piscataway,NJ:
 

IEEE,
 

2022:
 

1562-1567.
[18]XU

 

Xuannang,
 

SANFORD
 

T,
 

TURKBEY
 

B,
 

et
 

al.
 

Shadow -
consistent

 

semi - supervised
 

learning
 

for
 

prostate
 

ultrasound
 

segmentation[J] .
 

IEEE
 

Transactions
 

on
 

Medical
 

Imaging,
 

2021,
 

41(6):
 

1331-1345.
[19]郭敏,

 

张熙涵,
 

李阳.
 

融合注意力的教师互一致性半监督医学

图像分割[J] .
 

计算机工程,2024,50
 

(9):
 

313-323.
[20] JIAO

 

Rushi,
 

ZHANG
 

Yichi,
 

DING
 

Le,
 

et
 

al.
 

Learning
 

with
 

limited
 

annotations:
 

A
 

survey
 

on
 

deep
 

semi- supervised
 

learning
 

for
 

medical
 

image
 

segmentation[ J] .
 

Computers
 

in
 

Biology
 

and
 

Medicine,
 

2023,
 

169:
 

107840.
[ 21]LEE

 

D
 

H.
 

Pseudo-label:
 

the
 

simple
 

and
 

efficient
 

semi-supervised
 

learning
 

method
 

for
 

deep
 

neural
 

networks
 

[ C] / / Proceedings
 

of
 

the
 

Workshop
 

on
 

Challenges
 

in
 

Representation
 

Learning. Cham:
 

Springer,
 

2013:
 

896.
[ 22 ] GUO

 

Xiaoqing,
 

YUAN
 

Yixuan.
 

Joint
 

class - affinity
 

loss
 

correction
 

for
 

robust
 

medical
 

image
 

segmentation
 

with
 

noisy
 

labels
 

[C] / / Proceedings
 

of
 

the
 

International
 

Conference
 

on
 

Medical
 

Image
 

Computing
 

and
 

Computer - Assisted
 

Intervention. Cham:
 

Springer,
 

2022:
 

588-598.
[23]SHI

 

Yinghuan,
 

ZHANG
 

Jian,
 

LING
 

Tong,
 

et
 

al.
 

Inconsistency-
aware

 

uncertainty
 

estimation
 

for
 

semi- supervised
 

medical
 

image
 

segmentation[J] .
 

IEEE
 

Transactions
 

on
 

Medical
 

Imaging,
 

2021,
 

41(3):
 

608-620.
[24]WANG

 

Yuchao,
 

WANG
 

Haochen,
 

SHEN
 

Yujun,
 

et
 

al.
 

Semi-
supervised

 

semantic
 

segmentation
 

using
 

unreliable
 

pseudo- labels
 

[C] / / Proceedings
 

of
  

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

Piscataway, NJ:
 

IEEE,
 

2022:
 

4238 -
4247.

 

[25] YAO
 

Huifeng,
 

HU
 

Xiaowei,
 

LI
 

Xiaomeng.
 

Enhancing
 

pseudo
 

label
 

quality
 

for
 

semi - supervised
 

domain - generalized
 

medical
 

image
 

segmentation
 

[ J] .
 

arXiv
 

preprint
 

arXiv,
 

2201. 08657,
2022.

[26] LI
 

Caizi,
 

DONG
 

Li,
 

DOU
 

Qi,
 

et
 

al.
 

Self - ensembling
 

co -

training
 

framework
 

for
 

semi - supervised
 

COVID - 19
 

CT
 

segmentation [ J ] .
 

IEEE
 

Journal
 

of
 

Biomedical
 

and
 

Health
 

Informatics,
 

2021,
 

25(11):
 

4140-4151.
[27] ACHANTA

 

R,
 

SHAJI
 

A,
 

SMITH
 

K,
 

et
 

al.
 

SLIC
 

super
 

pixels
 

compared
 

to
 

state - of - the - art
 

super
 

pixel
 

methods[ J] .
 

IEEE
 

Transactions
 

on
 

Pattern
 

Analysis
 

and
 

Machine
 

Intelligence,
 

2012,
 

34(11):
 

2274-2282.
 

[28] THOMPSON
 

B
 

H,
 

DI
 

CATERINA
 

G,
 

VOISEY
 

J
 

P.
 

Pseudo-
label

 

refinement
 

using
 

super
 

pixels
 

for
 

semi - supervised
 

brain
 

tumor
 

segmentation
 

[ C ] / / Proceedings
 

of
 

2022
 

IEEE
 

19th
 

International
 

Symposium
 

on
 

Biomedical
 

Imaging.
 

Piscataway,NJ:
 

IEEE,
 

2022:
 

1-5.
[29] WANG

 

Xiaoyan,
 

YUAN
 

Yiwen,
 

GUO
 

Dongyan,
 

et
 

al.
 

SSA-
Net:

 

Spatial
 

self - attention
 

network
 

for
 

Covid - 19
 

pneumonia
 

infection
 

segmentation
 

with
 

semi - supervised
 

few - shot
 

learning
[J] .

 

Medical
 

Image
 

Analysis,
 

2022,
 

79:
 

102459.
[ 30 ] CHEN

 

Xiaokang,
 

YUAN
 

Yuhui,
 

ZENG
 

Gang,
 

et
 

al.
 

Semi
 

supervised
 

semantic
 

segmentation
 

with
 

cross
 

pseudo
 

supervision
 

[C] / / Proceedings
 

of
 

the
 

IEEE / CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

Piscataway, NJ:
 

IEEE,
 

2021:
 

2613-2622.
[31]KARIMI

 

D,
 

DOU
 

H,
 

WARFIELD
 

S
 

K,
 

et
 

al.
 

Deep
 

learning
 

with
 

noisy
 

labels:
 

exploring
 

techniques
 

and
 

remedies
 

in
 

medical
 

image
 

analysis[J] .
 

Medical
 

Image
 

Analysis,
 

2020,
 

65:
 

101759.
[32]SHU

 

Jun,
 

XIE
 

Qi,
 

YI
 

Lixuan,
 

et
 

al.
 

Meta-Weight-Net:
 

learning
 

an
 

explicit
 

mapping
 

for
 

sample
 

weighting[J] .
 

Advances
 

in
 

Neural
 

Information
 

Processing
 

Systems,
 

2019,
 

32:
 

1919-1930.
[33]GUO

 

Xiaoqing,
 

LIU
 

Jie,
 

LIU
 

Tongliang,
 

et
 

al.
 

Simt:
 

handling
 

open-set
 

noise
 

for
 

domain
 

adaptive
 

semantic
 

segmentation
 

[C] / /
Proceedings

 

of
 

the
 

IEEE / CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

Piscataway, NJ:
 

IEEE,
 

2022:
 

7022 -
7031.

[34]GUO
 

Xiaoqing,
 

YANG
 

Chen,
 

LI
 

Baopu,
 

et
 

al.
 

Metacorrection:
 

domain - aware
 

meta
 

loss
 

correction
 

for
 

unsupervised
 

domain
 

adaptation
 

in
 

semantic
 

segmentation
 

[ C ] / / Proceedings
 

of
 

the
 

IEEE / CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

Piscataway,NJ:
 

IEEE,
 

2021:
 

3926-3935.
[35] LAINE

 

S,
 

AILA
 

T.
 

Temporalensembling
 

for
 

semi - supervised
 

learning[J] .
 

arXiv
 

preprint
 

arXiv,1610. 02242,2016.
[36]AL-DHABYANI

 

W,
 

GOMAA
 

M,
 

KHALED
 

H,
 

et
 

al.
 

Dataset
 

of
 

breast
 

ultrasound
 

images[J].
 

Data
 

in
 

Brief,
 

2020,
 

28:
 

104863.
[37] YAP

 

M
 

H,
 

PONS
 

G,
 

MARTI
 

J,
 

et
 

al.
 

Automated
 

breast
 

ultrasound
 

lesions
 

detection
 

using
 

convolutional
 

neural
 

networks
 

[J] .
 

IEEE
 

Journal
 

of
 

Biomedical
 

and
 

Health
 

Informatics,
 

2018,
 

22(4):
 

1218-1226.
[38] HUANG

 

Qinghua,
 

HUANG
 

Yonghao,
 

LUO
 

Yaozhong,
 

et
 

al.
 

Segmentation
 

of
 

breast
 

ultrasound
 

image
 

with
 

semantic
 

classification
 

of
 

super
 

pixels[J] .
 

Medical
 

Image
 

Analysis,
 

2020,
 

61:101657.
[39]BERTELS

 

J,
 

EELBODE
 

T,
 

BERMAN
 

M,
 

et
 

al.
 

Optimizing
 

the
 

dice
 

score
 

andjaccard
 

index
 

for
 

medical
 

image
 

segmentation:
 

theory
 

and
 

practice
 

[C] / /
 

Proceedings
 

of
 

the
 

22nd
 

International
 

Conference
 

on
 

Medical
 

Image
 

Computing
 

and
 

Computer
 

Assisted
 

Intervention(MICCAI
 

2019) .
 

Cham:
 

Springer,
 

2019:
 

92.
 

[40]CHEN
 

Fang,
 

CHEN
 

Lingyu,
 

KONG
 

Wentao,
 

et
 

al.
 

Deep
 

semi-
supervised

 

ultrasound
 

image
 

segmentation
 

by
 

using
 

a
 

shadow
 

aware
 

network
 

with
 

boundary
 

refinement[ J] .
 

IEEE
 

Transactions
 

on
 

Medical
 

Imaging,
 

2023,
 

42(12):
 

3779-3793.
 

9第 10 期 张宇茜:
  

面向乳腺超声图像分割的半监督伪标签像素分类自集成网络


