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P’CS-Net:Semi-supervised pseudo-label pixel classification self—-ensemble
network for breast ultrasound image segmentation

ZHANG Yuxi

(School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China)

Abstract: Accurate segmentation of breast ultrasound images plays a crucial role in the early detection of breast cancer. Although
fully supervised models have achieved notable success in breast ultrasound image segmentation, their performance is contingent upon
the availability of a large volume of annotated data, which has limited the generalization of deep neural networks. To overcome this
limitation, a Pseudo — label Pixel Classification Self — integrated Network ( P’CS —Net) based on semi — supervised learning is
proposed. P?CS—Net introduces a cross pseudo supervision that leverages the strengths of two parallel yet initially uncorrelated
segmentation networks. These two networks are trained concurrently to generate a diverse set of pseudo—labels, then progressively
harmonized through a training process driven by consistency. By computing the cross—entropy between pseudo—-labels, the model
can identify low—confidence pixels. After that, noise transfer matrix is used to assist in noise modeling for low—confidence pixels.
The semantic information in these easily overlooked pixels is extracted and refined through the process described above, and P*CS—
Net improves the overall accuracy of segmentation. In addition, P?CS—Net self-integrates pseudo—labels by utilizing an exponential
moving average method. This approach further improves the model s capacity to utilize semantic information while improving the
pseudo—labels. Three publicly available datasets of breast ultrasound images are used to conduct a comprehensive experimental
evaluation of P>CS—Net. The experimental results show that the P*CS—Net algorithm performs well in various indicators compared
to other semi—supervised learning ultrasound segmentation methods, even with a training set that contained only 20% to 30%
annotated data. Furthermore, P?CS—Net performs comparably to classical fully supervised medical image segmentation algorithms,
even though it was only trained on a small amount of annotated data. The experimental results mentioned above demonstrate the
reliability and effectiveness of PCS—Net for segmenting breast ultrasound images.
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SK U-Net 78.15 70.63
P?CS-Net 85.32 75.39
Dataset C U-Net 72.13 63.03
Trans U-Net 80.71 71.32
Attention U-Net 75.25 68.72
Dense U—Net 74.42 65.79
SK U-Net 75.63 67.91
P?CS—Net 83.79 73.21
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Fig. 5 Segmentation results of ablation experiments
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Table 3 Results of ablation experiments on three datasets %
Dataset Method Dice JI
Dataset BUSI PC CPS 82.34 72.98

SE CPS 79. 65 70. 18

P2CS-Net 84.52 75.19

Dataset B PC CPS 84.15 74.52
SE CPS 80. 68 71.61

P2CS-Net 85.32 75.39

Dataset C PC CPS 80. 33 71.67
SE CPS 76.59 66.91

P2(CS—Net 83.79 73.21
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Table 4 Comparison of supervised learning data participation %

Dataset Labeled Unlabeled Dice
Dataset BUSI 10 90 82. 61
20 80 84.52

30 70 80. 63

40 60 75.68

50 50 72.86

Dataset B 10 90 81.21
20 80 81.34

30 70 85.32

40 60 76.04

50 50 71.38

Dataset C 10 90 81.06
20 80 83.79

30 70 79.47

40 60 77.72

50 50 70. 41
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