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A collaborative filtering recommendation method for memory graphs
based on comparative learning

XIE Chengyuan, ZHANG Heng, GONG Wenzheng, CHENG Yu

(School of Electronics and Information Engineering, Anhui Jianzhu University, Hefei 230601, China)

Abstract: Graph Collaborative Filtering has been an advanced method in the field of collaborative filtering recommendation,
although graph collaborative filtering shows strong performance, there usually exists the problem of data sparsity in actual scenarios.
In order to minimize the impact of data sparsity, graph collaborative filtering employs contrast learning to improve performance.
Existing methods usually adopt random sampling and other methods when constructing the contrast view, which has a large impact
on the original semantic structure of the graph and lacks to deal with the problem of information loss of high—order neighbor nodes in
the view. Therefore, the paper proposes a novel Memery Graph Collaborative Filtering recommendation method based on
comparative learning (MGCF). The method utilizes the gated recurrent unit memory nodes to express some of their own features
during the information dissemination process and considers the homogeneous neighboring nodes of users (items) as positive contrast
pairs for comparative learning. Experimental results on four publicly available datasets show a significant improvement in the
prediction accuracy of MGCF compared to the baseline method.
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Fig. 1 MGCF model structure graph
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Table 1 Experimental information data

e A WH REids W
Gowalla 29 858 40 981 1027 370 0.000 84
Yelp2018 31 668 38 048 1 561 406 0. 001 30
Amazon—Books 52 643 91 599 2 984 108 0. 000 62
MovieLens—1M 6 040 3 900 1 000 209 0.038 16
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Table 2 Performance comparison of baseline model
Gowalla Yelp Amazon-Book MovieLens

Hm
Recall NDCG Recall NDCG Recall NDCG Recall NDCG
NGCF 0.173 4 0.103 2 0.103 5 0.057 7 0.098 1 0.0557 0.274 8 0.2619
LightGCN 0.198 3 0.1161 0.116 8 0.065 8 0.1210 0.069 2 0.280 4 0.263 1
SGL 0.208 8 0.123 1 0.129 4 0.074 5 0.1337 0.078 1 0.2857 0.265 5
NCL 0.213 7 0.127 1 0.1380 0.082 2 0.1388 0.081 9 0.304 2 0.284 8
LightGCL 0.2155 0.129 2 0.1397 0.084 1 0.140 3 0.083 8 0.307 2 0.286 7
MGCF 0.217 3 0.1317 0.1411 0.085 6 0.143 1 0.084 6 0.3112 0.268 5
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Table 3  Structural neighborhood floor comparison
Gowalla Yelp Amazon—Book MovieLens
! Recall NDCG Recall NDCG Recall NDCG Recall NDCG
2 0.217 3 0.1317 0.1411 0.085 6 0.143 1 0.084 6 0.3112 0.268 5
4 0.208 1 0.1233 0.1347 0.076 9 0.134 2 0.079 1 0.303 3 0.265 1
6 0.206 6 0.121 4 0.1318 0.073 7 0.1321 0.077 2 0.300 5 0.263 9




200 =

aod
[Ny

it ow oM 5 m

ERRES

FERXI T AR ASCHRE T —Fp 3L X 2 2
(T I ) 3 8 4 72 7 3 (MGCF) | A5 78 A (&1 By
) 98 3 T R 28 g | AT T 08 3R SR T, 3458 =5 B
SRR S B 85 B R 458 4B & Xt L
S BT RS A s A R S 4R JE EA T
X, FE 4 B AR T R SC IR UE B T T Y
MGCF (A 350

&% 3k

[1] SARWAR B, KARYPIS G, KONSTAN 1J, et al. Item —based
collaborative ~ filtering recommendation  algorithms [ C ]//
Proceedings of the 10™ International Conference on World Wide
Web. New York:ACM, 2001 285-295.

[2]SCARSELLI F, GORI M, TSOI A C, et al. The graph neural
network model [ J]. IEEE Transactions on Neural Networks,
2008, 20(1): 61-80.

[3]JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on
contrastive self —supervised learning[ J]. Technologies, 2020, 9
(1):2.

[4)REWR, Rl TR, 5. KX LI E i [ 1], /MY
RN R Y, 2025,46( 1) :44-54.

[5]CHO K, MERRIENBOER V B, GULCEHRE C, et al. Learning
phrase representations using RNN encoder —decoder for statistical
machine translation[ J]. arXiv preprint arXiv,1406. 1078, 2014.

[6]BXRi%, FEARHR, BOH, 55, IR B Rtk [ )], (FRE
245,2021,6(5) :17-34.

[ 7] SUGANESHWARI G, SYED I S P. A survey on collaborative
filtering based recommendation system [ C ]//Proceedings of the
3" International Symposium on Big Data and Cloud Computing
Challenges (ISBCC-16"). Cham:Springer, 2016: 503-518.

[8] KOREN Y, BELL R, VOLINSKY C. Matrix factorization
techniques for recommender systems [ J]. Computer, 2009, 42
(8):30-37.

[9]BERG R, KIPF T N, WELLING M. Graph convolutional matrix
completion[ J]. arXiv preprint arXiv,1706. 02263, 2017.

[10]QU Yanru, BAI Ting, ZHANG Weinan, et al. An end—to—end

neighborhood - based interaction model for knowledge —enhanced

recommendation [ C ]//Proceedings of the 1% International
Workshop on Deep Learning Practice for High — Dimensional
Sparse Data. New York: ACM, 2019; 1-9.

[ 11JWANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph
collaborative filtering [ C ]//Proceedings of the 42™ International
ACM SIGIR Conference on Research and Development in
Information Retrieval. New York:ACM, 2019, 165-174.

[ 12]HE Xiangnan, DENG Kuan, WANG Xiang, et al. LightGCN.
Simplifying and powering graph convolution network for
recommendation| C ]//Proceedings of the 43™ International ACM
SIGIR Conference on Research and Development in Information
Retrieval. New York: ACM,2020. 639-648.

[ 13]WU lJiancan, WANG Xiang, FENG Fuli, et al. Self-supervised
graph learning for recommendation [ C ]//Proceedings of the 44"
International ACM SIGIR Conference on Research and
Development in Information Retrieval. New York: ACM, 2021.
726-735.

[ 14 ] LIN Zihan, TIAN Changxin, HOU Yupeng, et al. Improving
graph collaborative filtering with neighborhood - enriched
contrastive learning [ C ]//Proceedings of the ACM Web
Conference. New York: ACM,2022. 2320-2329.

[15] YU Junliang, YIN Hongzhi, XIA Xin, et al. Are graph
augmentations necessary? simple graph contrastive learning for
recommendation| C]//Proceedings of the 45" International ACM
SIGIR Conference on Research and Development in Information
Retrieval. New York: ACM,2022. 1294-1303.

[16 ] SHEN Xiao, SUN Dewang, PAN Shirui, et al. Neighbor
contrastive learning on learnable graph augmentation [ J ].
Proceedings of the AAAI Conference on Artificial Intelligence,
2023, 37(8): 9782-9791.

[ 17]CAI Xuheng, HUANG Chao, XIA Lianghao, et al. LightGCL.
Simple yet effective graph contrastive learning for recommendation
[J]. arXiv preprint arXiv,2302. 08191, 2023.

[ 18 ]RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR:
Bayesian personalized ranking from implicit feedback [ J]. arXiv
preprint arXiv,1205. 2618, 2012.

[19] KINGMA D P, BA J. Adam: A method for stochastic
optimization[ J]. arXiv preprint arXiv, 1412. 6980, 2014.

[20]GLOROT X, BENGIO Y. Understanding the difficulty of training
deep feedforward neural networks [ J ].
Learning Research,2010, 9:249-256.

Journal of Machine



