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Improved DETR algorithm for underwater target detection
ZHANG Lu, WEI Benchang, WEI Hong'ao, ZHOU Longgang

(School of Electrical & Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, Hubei, China)

Abstract: Underwater object detection is currently a hot topic in object detection. In response to the challenges brought by low
visibility and low lighting conditions during underwater detection, an improved DETR algorithm is proposed. The ResNeSt backbone
network using a distractor module has improved the performance of extracting underwater data features and eliminated redundant
background information. The introduction of a multi—scale deformable attention encoder enhances the aggregation ability of feature
information, resulting in faster model convergence speed and improved detection performance for small targets. The loss function
combining Smooth—L1 and CloU are used to enable the model to converge faster and achieve higher accuracy. Finally, experiments
are conducted on the expanded DUO underwater object detection dataset, and it is demonstrated that the proposed improved
algorithm outperforms other advanced object detection algorithms. The proposed algorithm can be effectively applied to underwater
object detection tasks.
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Fig. 4 Partial images in training set
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Table 2 Horizontal comparison experiment and results
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Faster R—CNN 0.748 0.538 0. 466
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AL 0.834 0. 622 0. 480

N T A BRSO T Y 7555 DETR i
BERAEK T B ARG I 5 1 8GR 18] 5 TRk T i E
XF L ZE SR, FEZ2 & DETR BAY /) 40 00 2R, 78
A MPZA SCRIRE AR . AT LAFE ), DETR B A7
TEH 22 BOSE R AR AL 0 | AR SCHY 7 AR 80
ARSI IE AT DL G M Tk F ARG

B 5 Deformable DETR #0732 Uiz 35 5 &l
Fig. 5 Deformable DETR and test results in this article
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