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摘　 要:
 

水下的目标检测是当前目标检测的一大热点,针对水下的低能见度和低光照条件带来的挑战,提出了一种改进的

DETR 算法。 首先,使用分散注意力模块的 ResNeSt 骨干网络,提升了对水下数据特征的提取性能,剔除了冗余的背景信息;
其次,引入了多尺度可变形注意力编码器,加强了对特征信息的聚合能力,使模型收敛速度更快,同时提高了对小目标的检测

性能;然后,使用了 Smooth-L1 和 CIoU 结合的损失函数,使模型能够更快地收敛,并且达到更高的精度;最后,在扩充的 DUO
水下目标检测数据集上进行实验。 结果表明所提的改进算法优于其他先进的目标检测算法,所提出的算法可以有效地应用

于水下目标检测任务。
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Abstract:
 

Underwater
 

object
 

detection
 

is
 

currently
 

a
 

hot
 

topic
 

in
 

object
 

detection.
 

In
 

response
 

to
 

the
 

challenges
 

brought
 

by
 

low
 

visibility
 

and
 

low
 

lighting
 

conditions
 

during
  

underwater
 

detection,
 

an
 

improved
 

DETR
 

algorithm
 

is
 

proposed.
 

The
 

ResNeSt
 

backbone
 

network
 

using
 

a
 

distractor
 

module
 

has
 

improved
 

the
 

performance
 

of
 

extracting
 

underwater
 

data
 

features
 

and
 

eliminated
 

redundant
 

background
 

information.
 

The
 

introduction
 

of
 

a
 

multi-scale
 

deformable
 

attention
 

encoder
 

enhances
 

the
 

aggregation
 

ability
 

of
 

feature
 

information,
 

resulting
 

in
 

faster
 

model
 

convergence
 

speed
 

and
 

improved
 

detection
 

performance
 

for
 

small
 

targets.
 

The
 

loss
 

function
 

combining
 

Smooth-L1
 

and
 

CIoU
 

are
 

used
 

to
 

enable
 

the
 

model
 

to
 

converge
 

faster
 

and
 

achieve
 

higher
 

accuracy.
 

Finally,
 

experiments
 

are
 

conducted
 

on
 

the
 

expanded
 

DUO
 

underwater
 

object
 

detection
 

dataset,
 

and
 

it
 

is
 

demonstrated
 

that
  

the
 

proposed
 

improved
 

algorithm
 

outperforms
 

other
 

advanced
 

object
 

detection
 

algorithms.
 

The
 

proposed
 

algorithm
 

can
 

be
 

effectively
 

applied
 

to
 

underwater
 

object
 

detection
 

tasks.
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0　 引　 言

随着人工智能的发展,越来越多的场景课题和

任务可以通过人工智能加以解决,随之而来的就是

对人工智能算法和硬件设备的需求增长明显。 而计

算机视觉作为人工智能领域的一个重要分支,已广

泛应用在人们的日常生活中。 目标检测是计算机视

觉的一项基本任务,其目的是对目标进行分类和定

位,但是对于较为复杂的水下场景,目前的目标检测

并没有取得令人满意的效果,这也在一定程度上阻

碍了水下机器人的发展[1] 。
海洋是地球上最重要的自然资源之一,其水下

环境是一个庞大且复杂的生态系统,具有独特的物

理和生物特性。 而在水下目标检测的过程中,存在

很多的困难和挑战,具体体现在以下 4 点:
首先,水下的场景普遍存在可见度低,即模糊;
其次,随着水下深度的增加,光照降低,能见度

显著降低;
然后,很多时候水下场景呈现白色、绿色、蓝色,

颜色较为相近且不易辨认;



最后,水生杂质和水生植物会对水下生物造成

遮挡。
这些问题导致其在色彩和纹理信息方面的表现

不如大气光学图像[2] 。
早期的目标检测依赖于人工提取图像特征,然

而面对各种各样的场景和复杂的环境,传统的人工

特征提取已经无法满足日益增长的需求。 目前的目

标检测主要分为两大类,分别是两阶段检测算法和

单阶段检测算法。
两阶段框架的过程与传统方案有些相似,首先

生成候选区域,然后将其分类到不同的目标类别中。
这种方法有着很高的准确性,但是检测速度较慢,对
于实时性要求高的任务不太适用。 基于两阶段的代

表性模型有 R-CNN 系列[3-5] 、空间金字塔池化网络

(SPP-Net) [6] 、R -FCN[6] 、特征金字塔网络[7] 。 Li
等学者[8]将 Fast

 

RCNN 应用于水下图像的识别与检

测,使用新的数据集共 12 种水下生物,相较于 R -
CNN 平均精度有所提高,此后又将 Faster

 

RCNN[9]

应用于水下图像识别与检测,再次提升平均精度。
Zeng 等学者[10]通过将对抗性遮挡网络( AOV)运用

到 Faster
 

R-CNN 当中,开发了一种新的框架,用于

水下海产品的目标检测。
单阶段框架可以从图像中直接预测目标的位置

和类别,而不需要进行额外的识别或提取区域的步

骤,突显出了强大的实时处理的能力。 强伟等学

者[11]将 ResNet 作为基础网络的 SSD 检测模型,用
于水下目标检测。 Li 等学者[12] 开发了一种基于

YOLOv3 的浮游生物的检测网络,该网络采用了密

集连接的结构, 便于特征传递。 Li 等学者[13] 将

YOLOv4 应用于水下目标检测,采用 k-means 算法

重新聚类得到水下目标的边框。 Lei 等学者[14] 将

YOLOv5 用于水下环境,并结合水下环境的特点对

其进行改进。 黄廷辉等学者[15]
 

提出一种基于 F -
CBAM 注意力机制的 YOLOv5 水下目标检测网络模

型 FAttention-YOLOv5 模型。 Wang 等学者[16] 利用

加权 Ghost-CSPDarknet 和简化的 PANet,提出了一

种轻量化的水下目标检测网络 LUO-YOLOX。 但传

统的深度学习卷积算法受制于卷积核感受野的大小

和锚框的形状,缺乏对全局的学习能力,以至于对目

标的检测精度并不高。
随着深度学习的不断发展,基于 Transformer 的

目标检测网络引起了广泛的关注,引发了研究热潮,
这种网络完全依赖于注意力机制来捕捉输入和输出

之间的全局依赖关系,通过点积操作自适应调整权

重参数,减少模型的学习偏差,因此 Transformer 拥

有比 CNN 更加强大的全局建模能力和泛化能力。
近年来,国内外学者也基于 Transformer 陆续提出了

不同的目标检测的模型,如 CBNET[17] ,DyHead[18]

和 Swin-Transformer[19]等。 Carion 等学者[20] 提出了

一个新的基于 Transformer 的目标检测模型、 即

DETR 模型。 不同于 Two-Stage 和 One -Stage 检测

算法,DETR 模型将目标检测视为一个直接集合预

测的问题,是一个端到端的检测模型。 首先利用

CNN 骨干模型进行特征提取,再利用 Transformer 进

行并行预测,DETR 模型的出现为解决目标检测任

务提供了一种全新的思路。

1　 改进的 DETR 检测算法

DETR 模型的出现打破了人们以往对目标检测

的固定思维,通过采用端到端的方法,将 CNN 和

Transformer 相 结 合, DETR 由 CNN 提 取 特 征,
Transformer 编码器-解码器进行预测,将目标检测视

为一个直接集合预测的问题,有效地消除了许多手

工设计的组件的需要,如非极大值抑制和锚框生成。
由于 Transformer 模型具备对全局特征进行关注和

学习的能力,DETR 模型同样也具备强大的全局学

习能力。 本文提出的改进的 DETR 检测算法包含 3
个方面,分别是采用多尺度可变形注意力编码器、进
行特征提取的 ResNeSt 骨干网络、以及将 Smooth-L1
和 CIoU 相结合作为损失函数。
1. 1　 Deformable

 

DETR 模型[21]

DETR 采用注意力检测模块进行检测和结果输

出。 其中,注意力编码器(Encoder)作为注意力检测

模块的编码部分,将输入的特征信息编码为一系列

的特征向量序列,结合了可学习的位置编码,能够帮

助模型实现更好的泛化以及捕捉位置信息,编码器

通过一系列的 Transformer 编码层,其中包括自注意

力机制和前馈神经网络,用来对输入的特征向量序

列进 行 处 理 和 转 换。 随 后, 与 注 意 力 解 码 器

(Decoder)结合,接受来自编码器的特征向量序列,
使得模型具备了全局建模的能力。 通过堆叠编码

器-解码器,可以将目标检测问题转换为集合预测

的问题。 然而,由于注意力模块初始化比较稀疏,需
要长时间学习以实现收敛,不仅计算量大,且没有使

用多尺度特征,导致对小目标的检测效果较差。 由

于本文是水下目标检测,小目标较多,为解决这一难

题,本文采用了多尺度可变形注意力对 DETR 的注

意力检测模块进行改进。
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1. 1. 1　 多尺度特征

由于 DETR 提取特征时并没有利用到多尺度的

特征,导致其对小目标的检测效果较差。 于是引进了

可变形注意力。 该模块可以很方便地处理多尺度特

征(Multi-Scale
 

Features),使模型在不使用特征金字

塔(Feature
 

Pyramid
 

Networks,FPN) [22] 结构的情况下

也能够有效地利用骨干网络提取到的多尺度特征图,
进而降低 FPN 的计算量,以及减少小目标语义信息

在下采样中的丢失,提升对小目标的检测性能。
Backbone 生成多尺度特征如图 1 所示。

Conv3?3,stride2

Conv1?1,stride1

Conv1?1,stride1

Conv1?1,stride1

H/32?W/32?2048

H/16?W/16?1024

H/8?W/8?512

H/64?W/64?256

H/32?W/32?256

H/16?W/16?256

H/8?W/8?256

C5

C4

C3

ResNetFeatureMaps InputMulti-scaleFeatureMap

图 1　 多尺度特征图

Fig.
 

1　 Multi-scale
 

feature
 

map

1. 1. 2　 多尺度可变形注意力

不同于普通的注意力编码器,可变形注意力编码

器的查询向量(query)并不是和全局每个位置上的键

向量(key)都计算注意力权重,而是对于每个查询向

量(query),仅在全局位置中采样部分位置的键向量

(key),并且值向量(value)也是基于这些位置插值得

到,使模型在保留性能的同时降低计算量。 因此本文

采用 的 是 多 尺 度 可 变 形 注 意 力 ( Multi - Scale
 

Deformable
 

Attention)检测模块,使模型可以有效地利

用多尺度信息,以及减少计算量。 Transformer 中的多

头注意力机制的数学公式具体如下:

　 MultiHeadAttn(zq,x)= ∑
M

m=0
Wm[∑

k∈Ωk

Amqk·W′
mxk] (1)

　 　 其中, zq 表示查询向量( query),由 x 经过线性

变换生成;q 表示对应的索引;k 表示键向量(key)的
索引; Ωk 表示所有的 k 集合;m 表示是第几个注意

力头部; Wm 表示对注意力施加在值向量( value)后

的结果进行线性变换从而得到不同头部的输出结

果; Amqk 表示归一化的注意力权重。 由此可知,在
Transformer 的多头注意力计算中,每个查询向量

(query)都要与所有位置的键向量(key)计算注意力

权重,并且对应施加在所有的值向量(value)上。 可

变形注意力机制的数学公式具体如下:

　 DeformAttn( zq,pq,x) =∑
M

m = 0
Wm[∑

K

k = 1
Amqk·W′

mx(pq +

△pmqk)] (2)
这里多了 pq 和 △pmqk。 其中,前者表示 zq 的位

置(理解成坐标即可),是 2D 向量,研究中称为参考

点(reference
 

points);后者是采样集合点相对于参考

点的位置偏移( offsets)。 如可变形卷积一样,位置

偏移 △pmqk 是可学习的,由查询向量(query)经过全

连接层得到。 并且,注意力权重也一样,直接由查询

向量(query)经过全连接层得到。 多尺度可变形注

意力机制的数学公式具体如下:

　 MSDeformAttn( zq,p̂q,{xl} L
l = 1) =

∑
M

m = 0
Wm[∑

L

l = 1
∑

K

k = 1
Amlqk·W′

mxl(ϕl(pq) + △pmlqk)] (3)

其中, L表示共有L层特征;l表示维度编号;p̂q 表
示归一化的参考点坐标; ϕl 表示将归一化后的特征

坐标映射到第 l 层特征上去; x 表示特征图编号。 式

(3)中加入了多尺度特征。 每个参考点在所有特征层

都会有一个对应的坐标,从而方便计算在不同特征层

进行采样的点的位置。 算法的整体流程如图 2 所示。

Multi-scalDeformable
Self-AttentioninEncoder

Multi-scalDeformable
Cross-AttentioninDecoder

TransformerSelf-
attentioninDecoder

ImageFeatureMaps

ResNeSt50 Image

Decoder

?4

Multi-scaleFeatureMaps

ObjectQueries

Encoder

图 2　 算法流程图

Fig.
 

2　 Flowchart
 

of
 

the
 

algorithm
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1. 2　 改进的骨干网络

ResNet 网络模型[23] 自 2015 年提出之后,许多

学者将该网络模型当作基础模型架构应用于后续研

究中。 通过引入跳跃连接( shotcut
 

connection 或者

skip
 

connection)的概念,这种连接方式允许网络直

接跳过一层或多层,将输入直接传递到输出,从而解

决了网络深度增加时产生的梯度消失和退化问题。
传统的卷积神经网络通过堆叠许多卷积层和非

线性激活函数来提取图像的特征,但由于网络层数

的不断增加,网络面临的梯度问题也随之而来。
ResNet 通过跳跃链接,即将某一层的输出直接与之

后的某一层的输入相加,能够传递更多的信息和梯

度,从而保持较浅层的特征信息能够传递到高层。
具体而言,ResNet 的残差函数通过如下公式来

计算:
F

 

= W2σ(W1X) (4)
　 　 其中, σ 表示 ReLU 激活函数;

 

W1 和W2 分别表

示线性变换矩阵;X 表示输入图像。 在此基础上、又
推得:

Y
 

=
 

F
 

(X,{X i}) +
 

X
 

(5)
　 　 将差异和原始输入相加,获得输出 Y。 因此,很
多后续的网络模型都借鉴了 ResNet 的思想,并将其

作为骨干模型来构建更复杂的网络结构。
ResNeSt 网络模型的灵感来源于 ResNeXt[24] 和

SE-Net[25] ,SK-Net[26] ,与 ResNet 相比,准确率有所

提高,但参数量没有显著增加,由于 ResNet 等网络

有限的感受野大小以及缺乏跨通道之间的相互作

用, 这些网络不能对特定图像进行有效分类。
ResNeSt 中引入了分散注意力( Split - Attention) 模

块,这一模块使 Attention
 

能在特征图组间获取不同

权重的特征,其中 ResNeSt 中 ResNeSt
 

block 的结构

如图 3 左侧所示。
其具体思想如下:将图像输入到网络当中,通过

分支结构划分为由超参数 k 确定的组数( Cardinal
 

group),并引入一个新的基数参数 r, 从而将整个图

像划分为 G = k × r 个子组, 即将整个网络模型分组

进行拆分处理。 然后,对每一个子群分别进行 1×1
 

和
 

3 × 3
 

的卷积,汇总并输入到分散注意力 ( Split
 

Attentions)当中。 接下来,通过分散注意力机制对

不同的特征赋予不同的权重,使每个通道的特征对

最终的预测结果产生不同的影响。 最后,将聚合输

出的特征图与残差模块输出的特征图进行线性组

合,得到最终的输出结果。 其中,分散注意力( Split
 

Attentions)的结构图如图 3 右侧所示。
　 　 图 3 的分散注意力模块中,首先聚合特征进行

全局平均池化处理,得到通道的全局上下文信息,然
后通过全连接层对各子组进行分类,并利用 Softmax
函数自适应计算各子组的权值。 模块中 r-Softmax
函数公式见如下:

Densec′,BN,ReLU

Globalpooling

r-Softmax

Densec Densec

(h，w，c)

Conv,1?1 Conv,1?1

Conv,3?3 Conv,3?3

Split-attention Split-attention

Concatenate

Conv,1?1

(h，w，c)

(h，w，c′)

(h，w，c′/k)

CardinalkCardinal1

图 3　 ResNeSt 骨干网络

Fig.
 

3　 Backbone
 

network
 

of
 

ResNeSt

94第 10 期 张路,
 

等:
  

面向水下目标检测的改进 DETR 算法



ak
i(c) =

exp(ζci( sk))

∑
R

j = 1
exp(ζcj( sk))

,　
 

if
 

R > 1

1
1 + exp( -ζci( sk))

,
 

if
 

R = 1

ì

î

í

ï
ï
ï

ï
ï
ï

(6)

其中, ak
i(c) 表示第 i 个子群的特征权值, ζci 表

示由密集连接层、全连接层和激活函数组成的注意

力权重。
1. 3　 损失函数的优化

本文是针对水下生物的检测与定位。 为了优化

模型,使损失函数更快地收敛以达到最优,本文提出

了将 Smooth-L1 损失函数和 CIoU 损失函数相结合

作为回归损失对检测边框进行预测回归,Smooth-L1
损失函数可以更快地收敛,CIoU 损失函数可以更好

地优化目标检测的精度,两者结合能够在训练过程

中更好地平衡目标检测的精度和鲁棒性。
1. 3. 1　 Smooth-L1 损失函数

Smooth-L1[27]结合了 L1 损失函数和 L2 损失函

数的优点,其定义公式为:

LSmooth-L1(bσ( i) ,b̂i) =

　 　 　

1
2 ∑

N

i = 0
(bσ( i) -b̂i) 2,

 

　
   

if
 

| bσ( i) -b̂i | < 1

∑
N

i = 0
| bσ( i) -b̂i | - 0. 5,

 

other

ì

î

í

ï
ï

ï
ï

(7)
由式(7) 可知 Smooth - L1

 

Loss 是一个分段函

数,综合了 L1
 

Loss 和 L2
 

Loss 两个损失函数的优点,
即在 x 较小时采用平滑的 L2

 

Loss,使得模型在训练

的过程中更加容易收敛,加快模型的训练速度,提高

训练效率。 在 x 较大时采用稳定的 L1
 

Loss,这有助

于减小梯度爆炸的风险,提高了模型的训练稳定性。
1. 3. 2　 CIoU 损失函数

DETR 模型中使用的是 GIoU 损失函数[29] ,该
损失函数考虑到了预测框和真实框之间的覆盖程

度、包围盒的大小以及相应的偏移量,对部分重叠的

目标框有较好的鲁棒性。 GIoU
 

定义公式如下:

GIoU = IoU - C - (A ∪ B)
C

(8)

　 　 其中, A表示预测框;B表示真实框;C表示能同

时包住 A 与 B 的集合。 但是当 AB 两个框完全重叠

的情况下, 不能反映出实际情况,GIoU 会退化成

IoU, A 和 B 的相对位置关系会无法区分, 且由于

GIoU 仍然严重依赖 IoU,因此在 2 个垂直方向,误差

很大,很难收敛。 因此针对上述问题提出了 DIoU

损失函数[29] 。 DIoU 定义公式如下:

DIoU = IoU - ρ2(b,bgt)
c2 (9)

　 　 其中, b,
 

bgt 分别表示预测框和真实框的中心

点; c 表示能够同时包含预测框和真实框的最小外

接矩形的对角线距离; ρ 表示计算 2 个中心点间的

欧式距离。
仍需一提的是,DIoU 损失能够将预测框和真实

框之间的距离、重叠率以及尺度都考虑进去。 DIoU
的惩罚项是基于 2 个边框之间的欧氏距离,能够有

效地避免 GIoU 在 2 个边框距离较远时产生较大的

外包框,所以 DIoU 的收敛速度更快、更稳定。 虽然

DIoU 能够对最小化预测框和真实框的中心点距离

实现加速收敛,但是预测框和目标框之间的长宽比

的一致性也是非常重要的。 针对以上问题,提出了

CIoU 损失函数,CIoU 定义公式如下:

CIoU = IoU - ρ2(b,bgt)
c2

+ αν( ) (10)

　 　 其中, α 表示权重函数, ν 表示度量长宽比的相

似性。 CIoU 损失函数同时考虑到了重叠面积、中心

点长度和长宽比带来的问题。
通过将 Smooth-L1 损失函数和 CIoU 损失函数

相结合的方法,从而提升了模型的训练效率和性能。

2　 实验结果及分析

2. 1　 实验数据集与评价标准

本文 在 已 公 开 的 探 测 水 下 物 体 数 据 集

(Detecting
 

Underwater
 

Objects,
 

DUO) [30]上对本文的

模型进行实验验证。 文献[30] 在水下机器人专业

大赛(Underwater
 

Robot
 

Professional
 

Contest,
 

URPC)
于 2017 ~ 2020 年公布的数据集的基础上,删减重复

和极其相似的图像并且进行重新标注,构建了水下

目标检测数据集 DUO,该数据集一共包含 7
 

782 张

图像,具体就是:训练集 6
 

671 张图像,测试集 1
 

111
张图像,其中包含 4 种生物,分别是海参、海胆、扇
贝、海星。 对该数据集使用翻转、剪裁、去雾等数据

增强方法,将数据集的数量进行扩充,对训练集和测

试集的数量分别扩充一倍。 部分图片如图 4 所示。
2. 2　 实验设备与评价指标

本文是运行在 AMD
 

EPYC
 

7371 处理器、运行

内存为 24
 

GB、GPU 为 RTX
 

A5000 的硬件平台上进

行训练和测试模型,操作系统是 Ubuntu20. 04,软件

环境为 Pytorch1. 12. 0。 在模型训练过程中,采用预

训练模型的骨干网络以加速训练。 为了更好地与其
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他的 检 测 网 络 进 行 性 能 比 对, 本 文 采 用 AP
 

(Average
 

Precision)来衡量模型的检测精度的指标,
在评估过程中,考虑了不同 IoU 阈值范围,分别设定

为 0. 5(记作 AP 50 )以及 0. 50 到 0. 95 的范围(记作

AP 50:95)。

图 4　 部分训练集图片

Fig.
 

4　 Partial
 

images
 

in
  

training
 

set

2. 3　 消融实验

本文设置了消融实验,进一步验证所提出的每

一个改进是否有效。 将 DETR 作为基准模型,每组

模型在 DUO 数据集上进行训练,对比每项改进对模

型的检测性能影响。 训练网络时 batch_size 设置为

2,初始学习率为 0. 000
 

1,实验结果见表 1。
　 　 表 1 中,DETR 为原模型的实验结果,在没有任

何改进的情况下准确度不高;对比实验 A 可知,通
过使用分散注意力模块的 ResNeSt 骨干网络,有效

提升了其准确度。 对比实验 B 可知,添加多尺度可

变形注意力编码器,模型的准确度得到了不小的提

升。 对比实验 C 可知,将改进的 Smooth-L1 和 CIoU
结合的损失函数替换掉原来的损失函数可知,优化

后的损失函数使网络进一步收敛至更高的检测精

度,且能够使网络模型更加快速地收敛。

表 1　 消融实验及结果

Table
 

1　 Ablation
 

experiment
 

and
 

results

实验编号 Epoch
改进的

ResNeSt-50
多尺度可变形

注意力编码器

优化的损失

函数
AP50 AP50 ∶ 95 AP s APM APL

DETR 300 0. 758 0. 421 0. 400 0. 559 0. 576

实验 A 50 √ 0. 794 0. 562 0. 412 0. 601 0. 595

实验 B 50 √ 0. 826 0. 619 0. 473 0. 635 0. 611

实验 C 50 √ 0. 766 0. 450 0. 395 0. 565 0. 580

实验 D 50 √ √ √ 0. 834 0. 622 0. 480 0. 638 0. 613

2. 4　 横向对比实验

将本文算法与其他常见的目标检测模型以及专

门的水下目标检测进行对比实验。 每个模型在扩充

的 DUO 水下目标检测数据集上进行实验,为了进一

步验证本文对小目标的检测性能,采用 MSCOCO 数

据集[31]中的评价 APs 来衡量像素点小于 32×32 的

小目标的检测性能。 实验结果见表 2。
表 2　 横向对比实验及结果

Table
 

2　 Horizontal
 

comparison
 

experiment
 

and
 

results

模型 AP50 AP50 ∶ 95 AP s

Faster
 

R-CNN 0. 748 0. 538 0. 466
Cascade

 

R-CNN 0. 756 0. 557 0. 430
RetinaNet 0. 706 0. 493 0. 386

FCOS 0. 779 0. 546 0. 403
Boosting

 

R-CNN 0. 791 0. 581 0. 493
YOLOv5m 0. 781 0. 432 0. 425

YOLOX 0. 831 0. 618 0. 428
DETR 0. 758 0. 421 0. 400

Anchor-DETR 0. 823 0. 607 0. 435
DAB-DETR 0. 821 0. 605 0. 431

Deformable
 

DETR 0. 826 0. 619 0. 473
本文 0. 834 0. 622 0. 480

　 　 为了更好地比较本文所使用的方法与 DETR 原

模型在水下目标检测方面的效果,图 5 展示了两者

的对比结果。 在左侧是 DETR 模型的检测效果,在
右侧是本文的检测效果。 可以看出,DETR 模型存

在较多的错检和漏检情况,而本文的方法相对较少。
本文方法可以更好地应用于水下目标检测。

图 5　 Deformable
 

DETR 和本文测试效果图

Fig.
 

5　 Deformable
 

DETR
 

and
 

test
 

results
 

in
 

this
 

article
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3　 结束语

水下目标检测复杂多变,本文以 DETR 为基础

框架,提出了改进的 DETR 检测算法。 将小数据集

进行扩充,更好地发挥基于 Transformer 的端到端的

目标检测效能。 采用改进的骨干网络 ResNeSt 网络

作为特征提取网络,提高了模型的检测精度。 采用

可变形注意力机制使模型能够快速收敛,以及提高

对小目标的检测能力。 在训练过程中,本文采用了

由 Smooth-L1 和 CIoU 组合成的损失函数,以加快模

型的收敛速度和提高检测精度。 实验结果表明,与
原算法及其他先进算法相比,该算法不仅能够更快

速地在训练阶段达到更高的精度,而且具有更高的

平均检测精度。
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