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Research for semantic segmentation algorithm of non-salient targets
based on Segformer

ZHU Faxun, SUN Wei, TANG Bo, ZHAO Xiaoke

(School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China)

Abstract; Semantic segmentation is one of the important branches in the field of computer vision. However, in practical working
scenarios, non-—salient targets are easy to be ignored and incompletely segmented by semantic segmentation networks due to their
small size and fuzzy boundaries. In this paper, a semantic segmentation algorithm for non-salient targets is proposed based on
Segformer. Firstly, in order to obtain more detailed features of non-salient targets, this paper adds small-scale features to ensure
that insignificant objects can be accurately recognized. Then, in order to further improve the algorithms feature extraction ability and
alleviate the computational burden, the XM—-FFN module is designed. The XM~-FFN module adopts the highly efficient XSepConv
and uses the ReLLU activation function, which is easier to compute, to further reduce the number of algorithmic parameters. Finally,
the experiment adopts the VOC2012 dataset with Segformer as the reference, and improves 2. 58% , 2.35% and 2. 49% in mloU,
mF1 and MPA indexes, respectively, which verifies the effectiveness of the algorithm.
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Fig. 1 Segformer model structure diagram
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Fig. 2 Structure of the algorithm model
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