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摘　 要:
 

为解决传统偏移最小和(Offset
 

Min-Sum,OMS)译码算法中偏移因子计算不准确和硬件计算复杂度高的问题,提出

了一种基于信息量演变理论的偏移最小和( Information
 

Evolution-based
 

Offset
 

Min
 

Sum,IE-OMS)译码算法。 IE-OMS 算法

采用信息量演变理论建立了计算偏移因子的数学模型,通过概率集中度函数对节点间更新的信息均值进行计算,实现了在迭

代过程中对偏移因子的精确调整。 此外,IE-OMS 算法引入了加权平均法对偏移因子的动态变化进行处理,确保硬件在每次

迭代过程中只需保存一个唯一的偏移因子。 与传统 OMS 算法相比,IE-OMS 算法不仅降低了误码率和平均迭代次数,而且

在硬件实现上减少了约 30. 1%的逻辑元件和 33. 33%的内存资源。 仿真结果表明,IE-OMS 算法在提高译码性能的同时降低

了硬件计算复杂度,具有更好的性能优势和应用潜力。
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Abstract:
 

In
 

order
 

to
 

solve
 

the
 

problems
 

of
 

inaccurate
 

offset
 

factor
 

calculation
 

and
 

high
 

hardware
 

computational
 

complexity
 

in
 

the
 

traditional
 

Offset
 

Min-Sum(OMS) decoding
 

algorithm,an
 

Information
 

Evolution-based
 

Offset
 

Min-Sum( IE-OMS) decoding
 

algorithmbased
 

on
 

information
 

evolution
 

theory
 

is
 

proposed.
 

IE-OMS
 

algorithm
 

adopts
 

the
 

information
 

evolution
 

theory
 

to
 

establish
 

a
 

mathe
 

matical
 

model
 

for
 

calculating
 

the
 

offset
 

factor,and
 

calculates
 

the
 

information
 

mean
 

value
 

of
 

the
 

update
 

between
 

nodes
 

through
 

the
 

probability
 

concentration
 

function,which
 

realizes
 

the
 

accurate
 

adjustment
 

of
 

the
 

offset
 

factor
 

in
 

the
 

iterative
 

process.
 

In
 

addition,the
 

IE-OMS
 

algorithm
 

introduces
 

a
 

weighted
 

average
 

method
 

to
 

deal
 

with
 

the
 

dynamic
 

change
 

of
 

the
 

offset
 

factor,which
 

ensures
 

that
 

the
 

hardware
 

only
 

needs
 

to
 

save
 

a
 

unique
 

offset
 

factor
 

during
 

each
 

iteration.
 

Compared
 

with
 

the
 

traditional
 

OMS
 

algorithm,the
 

IE-OMS
 

algorithm
 

not
 

only
 

reduces
 

the
 

BER
 

and
 

the
 

average
 

number
 

of
 

iterations,but
 

also
 

reduces
 

about
 

30. 1%
 

of
 

logic
 

components
 

and
 

33. 33%
 

of
 

memory
 

resources
 

in
 

the
 

hardware
 

implementation.
 

Simulation
 

results
 

show
 

that
 

the
 

IE-OMS
 

algorithm
 

has
 

better
 

performance
 

advantages
 

and
 

application
 

potentials
 

by
 

improving
 

the
 

decoding
 

performance
 

while
 

reducing
 

the
 

hardware
 

computational
 

complexity.
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0　 引　 言

低密度奇偶校验码( Low-Density
 

Parity-Check
 

codes,LDPC)是由 Gallager[1] 在其论文中首次提出

的。 LDPC 码不仅具有接近香农极限的优异解码性

能,还具有并行的解码结构、突出的纠错能力和适中

的解码复杂度等优点。 因此, LDPC 码在 WiMax、
IEEE

 

802. 11n 等通信系统中得到了大范围的应

用[2-3] ,成为通信领域中备受关注的一种编码方案。
LDPC 码的置信传播(Belief

 

Propagation,BP)译

码算法[4]通过校验节点和变量节点之间的信息更

新实现了高效的译码性能,但存在硬件资源需求较



高的问题。 与 BP 算法相比,最小和(Minimum
 

Sum,
MS)译码算法[5]在节点信息更新过程中采用了绝对

值和最小值的计算操作,减小了计算难度,但同时也

带来性能下降的问题。 为了弥补 MS 算法的性能损

失,归一化最小和( Normalized
 

Minimum
 

Sum,NMS)
译码算法[6] 和偏移最小和 ( Offset

 

Minimum
 

Sum,
OMS)译码算法[7] 对 MS 算法进行了改进。 具体就

是分别在检验节点信息更新过程中引入了尺度因子

和偏移因子,从而实现了译码性能的提升。 文献

[8]通过引入加权平均系数对 NMS 算法迭代过程

中的尺度因子进行自适应修正,降低了硬件存储需

求。 文献[9]中 BP 译码算法在分层译码架构的基

础上引入了信息量演变( Information
 

Evolution,IE)
理论[10] 对算法进行优化, 相较于 分 层 最 小 和

(Layered
 

Min
 

Sum,Layered-MS)译码算法[11] ,该算

法的译码性能更卓越,但硬件计算复杂度较高。
上述算法在考虑提高译码性能的同时,不能满

足硬件低计算复杂度的要求。 为了同时满足高译码

性能和低计算复杂度的需求,提出一种基于信息量

演变理论的偏移最小和( Information
 

Evolution
 

based
 

Offset
 

Min
 

Sum,IE-OMS)译码算法。 IE-OMS 算法

利用信息量演变理论对迭代过程中的偏移因子进行

了精确调整,并采用了加权平均法,使得硬件在每次

迭代过程中只需保存一个唯一的偏移因子,在提高

译码性能的同时降低了硬件计算复杂度。 仿真结果

表明,相较于传统的译码算法,IE-OMS 算法不仅降

低了误码率和平均迭代次数,而且在硬件实现上减

少了资源消耗。

1　 LDPC 码的译码算法

1. 1　 对数似然比置信传播算法

BP 算法是一种基于图模型的迭代算法[12] ,通
过将节点间的条件概率转化为相应的信息概率来进

行信息传递,并不断迭代更新节点的状态,直到达到

收敛条件为止。 BP 算法在处理大规模图模型时需

进行复杂的乘法计算,导致硬件计算复杂度高,并且

消耗大量的时间和资源。 为解决这一问题,对数似

然 比 置 信 传 播 ( Log
 

Likelihood
 

Ratio - Belief
 

Propagation,LLR-BP)译码算法[13]被提出。
LLR-BP 算法使用简单的加法运算来代替 BP

算法中的乘法计算,显著降低了硬件计算复杂度,缩
短了解码时间,使得 LLR-BP 算法在实际应用中具

有更好的可行性。 LLR - BP 译码算法的具体步

骤[14]如下:

(1 ) 初 始 化。 经 编 码 和 BPSK 调 制 后, 在

AWGN 信道下所得信息 yi 的对数似然比 ( Log -
Likelihood

 

Ratio,LLR)为:

　 L( l)(vij) = L(yi) = In
1 + exp

2yi

δ2( )
1 + exp

- 2yi

δ2( )
=

2yi

δ2 (1)

其中, L(vij) 表示变量节点 vi 向校验节点 cj 传
递的边信息;l 表示第 l 次迭代;yi( i = 1,2,…,n) 表

示经过 AWGN 信道后的信息序列; δ2 表示噪声

功率。
(2)迭代过程

①
 

校验节点更新。 推得的公式为:

　 L( l)(cji) = 2tanh -1 ∏
i′∈N( j) / i

tanh 1
2
L( l)(vji′)( )( ) (2)

　 　 其中, L(cji) 表示校验节点 cj 向变量节点 vi 传
递的边信息;N( j) / i表示除了变量节点 vi 外,校验节

点 cj 的全部相邻变量节点的集合。
②

 

变量节点更新。 推得的公式为:

L( l)(vij) = L(yi) + ∑
j′∈N( i) / j

L( l)(cj′i) (3)

　 　 其中, N( i) / j 表示除了校验节点 cj 外,变量节

点 vi 的全部相邻校验节点的集合。
(3)后验概率。 推得的公式为:

L( l)(qi) = L(yi) + ∑
j∈N( i)

L( l)(cji) (4)

　 　 其中, N( i) 表示变量节点 vi 的全部相邻校验节

点的集合。
(4)判决。 用到的公式为:

mi =
0,　 L( l)(qi) > 0

1,　 L( l)(qi) ≤ 0{ (5)

　 　 其中, L( l)(qi) > 0 时,mi = 0;L( l)(qi) ≤ 0 时,
mi = 1,进而得到码字 m( i) = (m1,

 

m2,…,mn)。 H
表示校验矩阵,mT 表示校验矩阵的第 m 列, 当

HmT = 0 时,停止迭代过程,将 m( i) 作为译码结果

输出;否则 l ← l + 1 继续迭代过程,直到 l 达到最大

迭代次数,并给出译码失败标志。
1. 2　 最小和译码算法及其简化算法

LLR-BP 算法在计算校验节点信息时使用了

tanh 函数,该运算在硬件实现上需进行传统的查表

方式,会消耗大量的逻辑资源和存储空间。 为了解

决这一问题,MS 译码算法被提出,其核心思想是利

用辅助函数最小和运算来简化 LLR-BP 算法中 tanh
函数的运算[15] 。 MS 算法的校验节点更新公式为:
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L( l)(cji) = ∏
i′∈N( j) / i

sgn(L( l)(vi′j)) ×

min
i′∈N( j) / i

( | L( l)(vji′) | ) (6)

　 　 MS 算法虽然降低了校验节点更新公式计算的

复杂度,但也带来了译码性能下降的问题。 LLR -
BP 算法的校验节点信息计算中使用了 tanh 函数和

arctanh 函数,其中 tanh 函数输入范围为( - 1,1),
arctanh 函数输入范围为( -∞ ,+∞ )。 经过 tanh 函

数运算,校验节点信息取值范围限制在(-1,1)之间,
多次乘法运算后,其绝对值会进一步减小。 再经过

arctanh 函数进行恢复时,其结果可能会偏向于较大

的值,从而使 MS 算法中校验节点信息值偏高[16] 。
为解决 MS 算法中信息值过高估计的问题,

OMS 译码算法被提出。 在 OMS 算法的校验节点更

新公式中,通过减去偏移因子 β 来减少 MS 算法中

过高估计的问题。 OMS 算法相对于 MS 算法的校验

节点更新公式为:

L( l)(cji) = ∏
i′∈N( j) / i

sgn(L( l)(vi′j)) ×

　 　 　 　 　 max{( min
i′∈N(j) / i

(| L(l)(vi′j) | )) - β,0} (7)

在 OMS 算法的迭代过程中,偏移因子 β 保持固

定不变会引入误差导致译码性能的损失。 为了解决

这个问题,IE-OMS 算法利用信息量演变理论对迭

代过程中的偏移因子 β 进行精确调整,并通过加权

平均法实现了硬件在每次迭代过程中只需保存一个

唯一的偏移因子 β 的设计, 从而在提高译码性能的

同时降低硬件计算复杂度。

2　 改进的偏移最小和译码算法

2. 1　 信息量演变理论

信息量演变理论是基于概率图模型对纠错码在

迭代译码过程中的性能进行优化。 通过在概率图模

型上进行迭代来分析节点信息的更新和传递,可计

算出每个节点信息的集中度以及概率空间的演变过

程。 通过分析信息的演变过程,可发现节点信息集

中度过低或者过高的情况,从而为纠错码的优化提

供理论基础[17] 。 可设:

v( l)
i = lg p(x = + 1 | y)

p(x = - 1 | y)

c( l)
j = lg p(x = + 1 | z)

p(x = - 1 | z)

ì

î

í

ï
ï

ï
ï

(8)

　 　 其中, x表示节点信息的值,y和 z表示迭代更新

后该节点所有信息。
IE-OMS 算法的信息量演变是通过校验节点信

息的概率集中度函数发生变化来实现的。 该函数描

述了校验节点周围变量节点的概率分布情况,反映

了校验节点的信息集中度。 概率集中度函数的演变

表达式如下:

F(pvi
) = exp(β· ∑

j∈N( i)
pcj
H ji) (9)

　 　 其中, pvi
表示变量节点 vi 的概率值;β 表示可调

节的偏移因子;pcj
表示校验节点 cj 的概率值;H ji 表

示校验矩阵 H 中第 j 个校验节点与第 i 个变量节点

之间的连接权重。
由式(9)可知, 偏移因子 β 被用来调整概率集

中度函数的变量节点和所有与其相邻的校验节点之

间的依赖关系强度。 当偏移因子 β 较小时,各节点

信息的概率分布较均匀,有利于快速收敛;当偏移因

子 β 较大时,各节点信息的概率分布会更加集中,有
利于算法准确度的提高。 然而,如果偏移因子 β 过

小,会导致节点的信息集中程度不够,影响算法的译

码性能;相反,如果偏移因子 β 过大, 会导致算法迭

代次数增多、收敛速度变慢,出现震荡或发散等问

题。 因此,在 IE-OMS 算法的迭代过程中,选择合适

的偏移因子 β 至关重要,可确保算法具有较好的收

敛速度和译码性能。
2. 2　 首次迭代中偏移因子的计算模型

在首次迭代中,校验节点到变量节点的信息更

新是基于初始化信道参数进行的。 在 LLR -BP 算

法和 MS 算法中,校验节点到变量节点的信息更新

方程是利用初始化信道参数进行计算的。 利用

LLR-BP 算法和 MS 算法的校验节点更新方程建立

模型,可准确计算出首次迭代中的偏移因子 β。
令 h1 和 h2 分别表示LLR - 算法和MS算法的校

验节点到变量节点的信息更新方程,如下所示:

　 　 h1 = 2tanh-1 ∏
i′∈N(j) / i

tanh 1
2
L(l)(vji′)( )( ) (10)

h2 = ∏
i′∈N(j) / i

sgn(L(l)(vi′j))· min
i′∈N(j) / i

(| L(l)(vji′) | ) (11)

　 　 LLR-BP 算法和 MS 算法的概率集中度函数表

达式分别如下所示:

F(h1) = 1
　 2πσ

(∫+∞

-∞
h1dL( l)(vji′))

dc-1
(12)

F(h2) = 1
　 2πσ

(∫+∞

-∞
h2dL( l)(vji′))

dc-1
(13)

　 　 其中, σ = 　 2N0 ,dc 表示校验节点信息的度。
结合 F(h1) 和 F(h2), LLR-BP 算法和 MS 算法

中校验节点到变量节点更新的信息均值定义如下:
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E( | h1 | ) = ∫+∞

-∞
| h1 |·F(h1)dh1 (14)

E( | h2 | ) = ∫+∞

-∞
| h2 |·F(h2)dh2 (15)

　 　 根据 h1 和 h2, 通过概率集中度函数可计算出

LLR-BP 算法和 MS 算法在首次迭代中校验节点击

到变量节点更新的信息均值表达式,具体如下:

E( | h1 | ) =
　 2

πσ ∑
∞

n = 1

E tanh
L( l)(vji′)

2( )
2n-1

( )
dc-1

2n - 2
(16)

E(| h2 |) ≈ 1
　 2πσ

∫μ

0
1 - F μ - y

σ( ) + F μ + y
σ( )é

ë
êê

ù

û
úú

dc-1

dy

(17)
其中, σ = 　 2N0 / 2,

  

μ = 4 / N0。
基于 E( | h1 | ) 和 E( | h2 | ) 来确定首次迭代中

偏移因子 β 值,如下所示:
β = E( | h1 | ) - E( | h2 | ) (18)

　 　 在首次迭代后,变量节点信息及其概率集中度

函数会随着迭代的进行而逐渐发生变化。 传统

OMS 算法中的偏移因子 β 仅是基于第一次迭代计

算得到的,无法准确应用于后续迭代。 为了克服偏

移因子 β 的局限性并提升译码效率,IE-OMS 算法

在后续迭代过程中采用信息量演变理论来动态调整

偏移因子 β, 以更好地适应概率分布的变化,从而提

高 IE-OMS 算法的译码性能。
2. 3　 后续迭代中偏移因子的计算模型

利用信息量演变理论对校验节点和变量节点之

间的信息传递进行量化和概率变化分析,可计算出

每个节点状态的概率分布,进而得到相应的概率集

中度函数。 通过概率集中度函数可以计算出每个节

点的信息均值,并对 2 次迭代之间的信息均值差异

进行比较,来调整偏移因子 β 的取值。
令 h3 表示 OMS 算法的校验节点到变量节点的

信息更新表达式,如下所示:

　 h3 = ∏
i′∈N( j) / i

sgn(L( l)(vi′j)) ×

max{( min
i′∈N( j) / i

( | L( l)(vi′j) | )) - β,0} (19)

　 　 为了简化上述表达式,令上式中:
W = max{( min

i′∈R( j) / i
( | L( l)(vi′j) | )) - β,0} (20)

　 　 结合信息演变方程(8),节点信息的离散概率

分布函数的定义如下:

P(X = x) = ∑p(x)·log(p(x)) (21)

　 　 其中, P(X = x) 表示随机变量 X 取值为 x 的概

率;p(x) 表示随机变量 X 取值为 x 的概率质量;x 表

示随机变量 X 的一个具体取值。
在后续节点信息的传递过程中,节点信息的概

率分布函数表达式如下所示:
　 F′(x) = P(W ≤ x) = {1 - [1 - P( | L( l)(vi′j) ≤

x + β | )] dc-1}·P(x ≥ 0) (22)
节点信息的概率集中度函数表达式为:

F(x = i) =F′(x = i) -F′(x = i - s) (23)
　 　 其中, s 表示量化步长。

研究中,校验节点到变量节点更新的信息均值

E( | h3 | ) 具体表达式如下所示:
　 E(| h3 | ) = E[max( min

i′∈N(j) / i
(| L(l)(vi′j) | - β,0))] =

E(W) = ∑
i
i·F(x = i) (24)

根据信息量演变模型, 在后续每一次迭代中可

通过节点间更新的信息均值差异来选择合适的偏移

因子 β l,可将偏移因子 β l 定义为一个关于信息均值

的函数, 如下所示:

βl =
E( | h2 | ) - E( | h1 | ),　 l = 1
E( | h3 | ) - E( | h1 | ),　 l ≥ 2{ (25)

　 　 其中, β l 表示第 l 次迭代时的偏移因子值。
在每次迭代中, 通过计算节点间更新的信息

均值,并将其与之前的信息均值进行比较,来对偏移

因子 β 进行动态调整。 如果当前信息均值较大,可增

大偏移因子 β;如果当前信息均值较小,可减小偏移

因子 β。 通过对偏移因子 β 的调整,使得在后续每次

迭代中的信息均值保持在一个相对稳定的范围内,从
而确保 IE-OMS 算法的收敛速度和稳定性。
2. 4　 基于加权平均化的偏移因子处理

如果将每次迭代计算得到的偏移因子 β 存储在

寄存器中,并在相应的迭代次数时检索使用对应的

偏移因子 β, 可以进一步提高解码性能,但此方法需

要大量存储位。 为了确保提高译码性能的同时降低

存储需求,通过使用加权平均化[18] 来处理偏移因子

β l, 并将加权平均化后的结果作为每次迭代时所对

应的唯一偏移因子 β,可由下式计算求出:
 

β = 1
6

·ui·∑
6

i = 1
μi

    βl (26)

　 　 其中, μ i 表示第 i 个加权平均系数。
随着迭代次数的增加,IE -OMS 算法的修正能

力逐渐下降。 为更好地适应修正能力的变化,可依

据迭代次数调整加权系数,具体的加权系数设置为:
μ 1 = 0. 20、

  

μ 2 = 0. 15、
   

μ 3 = 0. 10、
   

μ 4 = 0. 10、
 

μ 5 =
0. 05、

    

μ 6 = 0. 01。 在初始迭代阶段的加权系数较
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大,以使修正能力在开始时得到加强;在后续迭代阶

段的加权系数逐渐减小,以适应修正能力的下降。
在每次迭代中,通过加权平均化方法处理偏移因

子 β l,可以更好地捕捉偏移因子 β 的动态变化。 同

时,每次迭代只需一个累加器和一个计数器的存储位

来计算加权平均后偏移因子 β,并将其作为每次迭代

所对应的唯一偏移因子 β, 使得 IE-OMS 算法在提高

译码性能的同时更加节省硬件存储资源。

3　 结果分析

3. 1　 译码性能仿真分析

在本次仿真中,使用 IEEE
 

802. 11n 标准下的

LDPC 码[19] 参数为(8448,4224)。 采用 Matlab 软件

进行二进制相移键控 ( Binary
 

Phase
 

Shift
 

Keying,
BPSK)调制方式下的加性高斯白噪声(AWGN)信道

仿真测试,测试了在不同信噪比下算法的误码率和平

均迭代次数,每个信噪比下最多进行 20 次迭代,并统

计了 2
 

200 个误帧数。 图 1 为 IE-OMS 算法与其它 6
种不同的译码算法在不同 SNR 下的误码率对比。

100
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误
码
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图 1　 不同算法的误码率对比图

Fig.
 

1　 Comparison
 

of
 

Bit
 

Error
 

Rates
 

of
 

different
 

algorithms

　 　 图 1 中,NMS 算法、OMS 算法、DE-NMS 算法、
Layered

 

Min
 

Sum 算法和 IE-OMS 算法都是对 MS 算

法的改进。 由图 1 可知,改进后的 5 种译码算法相

较于 MS 算法有较低的误码率,在译码性能上有明

显的提高。 Layered
 

Min
 

Sum 算法和 IE -OMS 算法

的译码性能十分相似,但 IE-OMS 算法的性能更接

近 BP 算法。 这是因为,在 IE -OMS 算法迭代更新

过程中,通过引入精确调整后的偏移因子 β 来调整

节点信息更新的权重,使得算法能够灵活地适应不

同误码率的要求,并提供更接近于理论极限的译码

性能,实现高性能译码。 图 2 为 IE-OMS 算法与其

它 6 种不同的译码算法在不同 SNR 下的平均迭代

次数对比。
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图 2　 不同算法的平均迭代次数对比图

Fig.
 

2　 Comparison
 

of
 

the
 

average
 

number
 

of
 

iterations
 

of
 

different
 

algorithms

　 　 图 2 中,MS 算法的收敛速度最慢,所需的迭代

次数更多。 对 MS 算法改进后的 5 种译码算法收敛

性能近似,相比之下,IE-OMS 算法表现出最为优越

的收敛性,其收敛速度更快,所需的迭代次数更少。
这是因为,IE-OMS 算法通过引入信息量演变理论,
对节点信息的状态和分布进行更加有效且准确的处

理,使得算法具有更高的收敛速度和较少的迭代次

数,从而提高了译码的效率和性能。
3. 2　 复杂度分析

NMS 算法、OMS 算法、DE - NMS 算法、Layered
 

Min
 

Sum 算法和 IE-OMS 算法都是对 MS 算法的改

进,但在本质上仍是 MS 算法。 这 7 种不同的算法

在一次迭代过程中处理校验节点信息更新所需的硬

件操作见表 1。 在表1 中,Nb 表示校验矩阵H中元素

“1” 数量,R 表示校验矩阵 H 的行重。

表 1　 校验节点信息更新硬件复杂度

Table
 

1 　 Hardware
 

complexity
 

of
 

verification
 

node
 

information
 

update

算法
操作

加法 乘法 异或 比较

MS 0 0 2Nb - R 2Nb

NMS 0 2Nb 2Nb - R 3Nb

OMS 2Nb 0 2Nb - R 3Nb

DE-NMS 0 Nb 2Nb - R 3Nb

Layered
 

Min
 

Sum Nb Nb 2Nb - R 3Nb

IE-OMS Nb 0 2Nb - R 3Nb

BP 6Nb - R 0 6Nb - R 0

　 　 表 1 中,MS 算法的计算复杂度最低,Layered
 

Min
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Sum 算法计算复杂度略高, IE - OMS 算法相对于

Layered
 

Min
 

Sum 算法去除了乘法运算,计算复杂度

适中,在保持较高译码性能的同时节省了硬件资源。
　 　 硬件选用 Altera

 

Cyclone
 

FPGA。 IE-OMS 算法

和 Layered
 

Min
 

Sum 算法在硬件实现时,硬件资源需

求情况见表 2。
　 　 表 2 中,Layered

 

Min
 

Sum 算法需要更多的硬件

资源,这是因为该算法引入了层次结构,所以需要更

多的逻辑元件和存储位来支持每一层的信息传递和

更新。 IE-OMS 算法需要较少的硬件资源,这是因

为该算法去除了乘法运算等复杂操作,并简化了信

息传递策略,使得 IE-OMS 算法在保持较高译码性

能的同时节省硬件资源。 相对于 Layered
 

Min
 

Sum
算法,IE-OMS 算法可降低逻辑元件数量约 30. 10%
以及存储位需求约 33. 33%。

表 2
 

　 IE-OMS 算法和 Layered
 

Min
 

Sum 算法硬件资源需求情况

Table
 

2　 Hardware
 

resource
 

requirements
 

of
 

IE-OMS
 

algorithm
 

and
 

Layered
 

Min
 

Sum
 

algorithm

硬件资源 算法
操作

加法 比较 乘法
总计

逻辑元件 IE-OMS 2
 

268Nb - 756R 240Nb 0 2
 

508Nb - 756R

Layered
 

Min
 

Sum 2
 

268Nb - 756R 240Nb 1
 

080Nb 3
 

588Nb - 756R

存储位 IE-OMS 80Nb - 40R 0 0 80Nb - 40R

Layered
 

Min
 

Sum 120Nb - 40R 0 0 120Nb - 40R

4　 结束语

针对在译码迭代过程中偏移因子 β 计算不准确

的问题,提出了一种新型的 IE-OMS 译码算法。 IE-
OMS 算法通过引入信息量演变理论,先计算出每个

节点信息量化点的概率集中度函数,该函数描述了

节点信息在空间中的集中程度。 然后用该函数来计

算节点间更新的信息均值,通过对 2 次迭代之间的

信息均值差异进行比较来调整偏移因子 β。 在确保

高译码性能的前提下,为进一步降低硬件存储需求,
通过对偏移因子 βl 进行加权平均化处理,并将处理

后结果作为每次迭代时所对应的唯一偏移因子 β,
在提高译码性能的同时降低了硬件资源需求。 仿真

结果表明,与传统译码算法相比,IE-OMS 算法具有

较低的误码率和较少的平均迭代次数。 在硬件资源

上,与 Layered
 

Min
 

Sum 算法相比,IE -OMS 算法可

以减少约 30. 10%的逻辑元件数量和 33. 33%的内

存资源。
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