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A U-shaped—network based on Transformer and feature interaction
for lung lesion image segmentation

HE Xiaochen, DING Derui

(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract; Lung lesion images are usually sensitive to noise, variable shape of the lesion area, and difficult to capture structural
information. As a result, the segmentation network cannot learn the inherent shape features of the lung lesion and extract accurate
structural information, resulting in unclear segmentation results. To solve these problems, this paper proposes a U-shaped lung
lesion image segmentation network based on Transformer feature interaction. The Swin—Transformer layer is firstly used to extract
the long—distance dependent features of shallow inputs, and hence effectively locate the target structures with large shapes and size
differences, and suppress the influence of noises to a certain extent. The feature interaction module is designed to model the global
contextual information of the codec layer, realize the interaction of different layers, enrich the semantic features, and effectively
restore the structural details. Subpixel convolution is introduced to replace the traditional sampling method, which can effectively
process the segmentation image with low resolution and improve the detail and clarity of the image. The experimental results show
that the proposed algorithm has a good segmentation effect and can generate clear and accurate segmentation images.
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TF-Unet 76.13 82.77 85.36 98.02 71.48
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Fig. 7 Visualization segmentation output comparison of ablation

experiment
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