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摘　 要:
 

在肺部病灶图像中,病灶区域形状多变、结构信息捕捉困难且对噪声敏感等,这导致分割网络无法学习到肺部病灶固

有的形状特征并提取到精确的结构信息,从而造成分割结果的不清晰。 针对上述问题,本文提出了一种基于 Transformer 特征

交互的 U 型肺部病灶图像分割网络。 该网络以 Swin-Transformer 层提取浅层输入的长距依赖特征,有效定位形状和大小差

异较大的结构目标,并在一定程度上抑制噪声的影响;设计了特征交互模块建模编-解码层的全局上下文信息,实现了不同层

间的交互,丰富了语义特征,有效还原了结构细节;通过引入亚像素卷积来代替传统上采样,有效地处理了低分辨率分割图,
提高了图像的细节和清晰度。 实验结果表明,文中所提算法具有良好的分割效果,可以生成清晰、准确的分割图像。
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Abstract:
 

Lung
 

lesion
 

images
 

are
 

usually
 

sensitive
 

to
 

noise,
 

variable
 

shape
 

of
 

the
 

lesion
 

area,
 

and
 

difficult
 

to
 

capture
 

structural
 

information.
 

As
 

a
 

result,
 

the
 

segmentation
 

network
 

cannot
 

learn
 

the
 

inherent
 

shape
 

features
 

of
 

the
 

lung
 

lesion
 

and
 

extract
 

accurate
 

structural
 

information,
 

resulting
 

in
 

unclear
 

segmentation
 

results.
 

To
 

solve
 

these
 

problems,
 

this
 

paper
 

proposes
 

a
 

U- shaped
 

lung
 

lesion
 

image
 

segmentation
 

network
 

based
 

on
 

Transformer
 

feature
 

interaction.
 

The
 

Swin-Transformer
 

layer
 

is
 

firstly
 

used
 

to
 

extract
 

the
 

long-distance
 

dependent
 

features
 

of
 

shallow
 

inputs,
 

and
 

hence
 

effectively
 

locate
 

the
 

target
 

structures
 

with
 

large
 

shapes
 

and
 

size
 

differences,
 

and
 

suppress
 

the
 

influence
 

of
 

noises
 

to
 

a
 

certain
 

extent.
 

The
 

feature
 

interaction
 

module
 

is
 

designed
 

to
 

model
 

the
 

global
 

contextual
 

information
 

of
 

the
 

codec
 

layer,
 

realize
 

the
 

interaction
 

of
 

different
 

layers,
 

enrich
 

the
 

semantic
 

features,
 

and
 

effectively
 

restore
 

the
 

structural
 

details.
 

Subpixel
 

convolution
 

is
 

introduced
 

to
 

replace
 

the
 

traditional
 

sampling
 

method,
 

which
 

can
 

effectively
 

process
 

the
 

segmentation
 

image
 

with
 

low
 

resolution
 

and
 

improve
 

the
 

detail
 

and
 

clarity
 

of
 

the
 

image.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

proposed
 

algorithm
 

has
 

a
 

good
 

segmentation
 

effect
 

and
 

can
 

generate
 

clear
 

and
 

accurate
 

segmentation
 

images.
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0　 引　 言

在临床上,计算机断层扫描(CT)图像常用于对

患者的肺部病灶进行诊断和评估。
 

通过准确分割出

肺部病灶区域,可以获取病灶的位置、形状、大小等

关键信息,从而为医生做出后续诊断和制定诊疗方

案提供重要的辅助[1] 。
 

肺部病灶的准确分割对于肺

部疾病的早期发现、定量评估和治疗监测具有重要

意义。 然而,肺部病变的多样性以及图像采集过程

中噪声的影响,则对准确分割肺部病灶图像造成了

不小的挑战[2] 。
在医学图像分割领域,以 UNet[3] 及其变体为代

表的编解码网络是最常用的方法。 然而由于卷积操

作的窗口大小有限,就只能对局部区域进行感知和



特征提取;当图像中的目标物体在尺度上发生变化

时,将可能无法准确地进行分割。 针对这些问题,基
于注意力机制和特征金字塔的方法近年来备受关

注。 注意力机制可以帮助模型在提取特征时,根据

上下文信息动态调整不同位置的重要性权重,有助

于模型更好地理解特征的语义结构。 特征金字塔结

构可以通过在不同尺度上对图像进行特征表示,就
能有效捕捉不同尺度物体的特征[4] 。 以上方法虽

然提高了分割精度,但是传统的注意力机制,例如

SE[5] 、ECA[6] 、CBAM[7]通常是基于局部邻域的关联

性来计算注意力权重,限制了模型对全局上下文信

息的建模能力; 特征金字塔结构, 例如 PSP [8] 、
AHSP [9] 、CE[10]在不同尺度上提取特征会导致特征

冗余的问题。
针对肺部病灶图像的特点、传统注意力机制的

局限性以及特征金字塔结构的冗余性,本文提出了

一种新的肺部病灶分割网络,主要的工作和创新点

如下所示:
(1)在 U 型网络结构的基础上,提出一种基于

Transformer 特征交互的肺部病灶分割网络,有效地

关注全局上下文信息,捕捉目标的结构特征。
(2)在编码器的低层添加 Swin-Transformr 层,

实现长距远程依赖特征的提取,抑制噪声,有效定位

复杂多变的肺部病灶。
(3)不同于一般的跳跃连接,在编解码不同层

之间设计特征交互模块,实现编码层和解码层不同

尺度信息的特征交互,并且对注意力模块的输出特

征信息进行修正,调整注意力的错误偏差,改善图像

的结构细节。
(4)在解码器的上采样部分,不同于传统的双

线性上采样以及反卷积上采样,通过引入亚像素卷

积,实现对缩小后特征图的放大处理。

1　 本文方法

本文致力于提高病变阴影区域模糊不规则、结
构不清晰的肺部病灶图像的处理能力。 因此,提出

的模型不仅需要学习到全局的形状分布特征,还要

能实现对于该类图像结构细节的恢复。 为此,本文

设计了一种基于 Transformer 特征交互的 U 型肺部

病灶 图 像 分 割 网 络 ( A
  

Transformer
 

and
 

Feature
 

interaction- based
 

U - shaped
 

network
  

for
 

lung
 

lesion
 

image
 

segmentation,TF - Unet),设计结构如图 1 所

示。
因为 Unext[11]网络提出的 Tok-MLP 块可以有

效地标记和投射卷积特征,且该网络参数数量少、计
算复杂度低,所以本文也采用了 Unext 型的网络构

架。 具体地,输入的肺部病灶 CT 图像在编码器的

前 2 个阶段分别添加 Swin -Transformer[12] 层,用于

弥补卷积窗口局限性导致的全局形状分布信息的丢

失,并在一定程度上降低噪声带来的不良影响;在
Tok-MLP 块中,分别跨越宽度和高度移动卷积特

征,创建跨越宽度和高度的随机窗口,并在窗口内计

算注意力,进而向编码器高层阶段得到的全局特征

中引入更多的局域特征,丰富语义信息;然后,构建

特征交互模块对编解码不同尺度层的信息进行关注

与修正,从而恢复更多的病灶结构细节;最后,在解

码器的每个上采样阶段采用亚像素卷积[13] 操作,从
而对图像进行有效放大,实现病灶区域的准确分割。

MaxPooling
Sub-PixelConvolution
Swin-TransformerLayer
Featureinteraction
Tok-MLP

图 1　 基于 Transformer 特征交互的 U 型肺部病灶图像分割网络

Fig.
 

1　 U-shaped
 

lung
 

lesion
 

image
 

segmentation
 

network
 

based
 

on
 

Transformer
 

and
 

feature
 

interaction

1. 1　 Swin-Transformer 层
由于 U 型网络的卷积操作对输入图像进行特

征提取时,卷积核的大小是固定的,导致低层阶段编

码的信息较为局部。 当出现病变阴影大于卷积窗口

覆盖面积时,就会难以捕捉到病灶区域的形状分布

特点。 此外,医疗设备采集的 CT 图像不可避免地

会伴随一定的噪声,从而影响网络的分割精度。
相较于卷积操作只是学习并更新卷积核窗口内

的参数,Swin-Transformer 则是采用全局自注意力机

制方法,对整张图像上每个像素点之间计算注意力

权重,因此该方法能够有效地学习整张图像上病灶

特征的内在关联,捕捉到整个病灶区域的形状分布

特征。 为此,本文在低层编码阶段添加了 SWin -
Transformer 层,即移位窗口 Transformer 层具体设计

结构如图 2 所示。 当 Transfomer 由语言任务应用到

视觉任务时,图像中像素的高分辨率导致了计算复

杂度剧增,移位窗口的方法则将自注意力的计算限

制在不重叠的局部窗口,同时允许跨窗口连接,从而

提高了 Transformer 在视觉任务的应用效率。 首先,
Swin-Transformer 层中第一个部分使用一个规则的
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窗口划分策略(W-MSA),从左上角像素开始,将 8×
8 的特征图均匀划分为 2×2 个、大小为 4×4 的窗口;
然后,第二个部分采用来自前一层移位的窗口配置

(SW-MSA),窗口从左上角分别向右侧和下方偏移

2 个像素,W-MSA 和 SW-MSA 的窗口划分如图 3
所示。 移位窗口配置方法引入了前一层相邻非重叠

窗口之间的联系。

PatchMerging

LN

W-MSA

LN

MLP

LN

SW-MSA

LN

MLP

zl+1

zl̂

zl

zl+1̂

zl-1 zl

图 2　 Swin-Transformer 层
Fig.

 

2　 Swin-Transformer
 

layer

W-MSA SW-MSA

图 3　 窗口划分方法

Fig.
 

3　 Window
 

partitioning
 

method

　 　 使用移位窗口划分的方法,Swin-Transformer 层

的计算规则如下:

ẑl = W - MSA(LN(zl -1)) +zl -1

zl = MLP
 

(LN( ẑl)) + ẑl

ẑl +1 = SW - MSA
 

(LN(zl)) +zl

zl +1 = MLP(LN( ẑl +1)) + ẑl +1

ì

î

í

ï
ï
ï

ï
ï
ï

 

(1)

其中,W-MSA 表示常规窗口分区配置的多头

自注意力;SW-MSA 表示移位窗口分区配置的多头

自注意力; ẑl 表示(S) W-MSA 操作的输出特征; zl

表示 MLP 操作的输出特征。
1. 2　 特征交互模块

肺部病灶形状分布不规则,致使其结构信息的

捕捉较为困难。 传统的 U 型网络在处理图像分割

任务时,只是在编码的阶段中添加注意力机制来突

出病灶信息的权重,却忽略了解码阶段在逐步恢复

图像细节过程中更加需要关注病灶区域的细节特征

并进行细微调整,因此只能得到粗略的病灶分割图。
类似于人类的视觉特性,当关注一个实体时,首先会

从全局角度定位潜在目标物体,然后不断调整视线

以关注该实体的不同部位;而特征交互模块( FI)的

基本思想是先利用轴向注意力机制来对全局信息进

行关注,准确定位病灶结构信息,获得全局注意力权

重图,然后通过对注意力图的修正,不断细化病灶的

边缘细节。
传统的特征金字塔结构通常采取多路分支,同

时使用不同大小卷积核来进行不同尺度特征的提

取。 不仅计算复杂度高,而且还忽略了对提取的特

征做出修正;而特征交互模块是将已有的编解码不

同层之间的不同尺度的信息进行拼接融合,在不增

加网络复杂度的前提下对提取的多尺度信息进行学

习并做出调整,提高了对病灶细节信息预测的准确

度,实现了对于肺部图像的高效处理。
在医学图像领域,大部分模型都采用 U 型架

构,使用在编码层与对应的相同分辨率的解码层的

输出特征之间进行相加或者拼接操作的跳跃连接的

方式,来实现编解码相同层之间信息的融合。 鉴于

此类方式过于单一,传统特征金字塔结构的不足以

及人类视觉的特性,本文在解码阶段设计了特征交

互模块,如图 4 所示。

1?1Conv

2?Sigmoid

CoordinateAttention

Element-wisemul

Element-wisesum

f1

f2

F1 F1′

F

图 4　 特征交互模块

Fig.
 

4　 Feature
 

interaction
 

module

　 　 首先,将编解码不同层之间的不同尺度的信息

进行拼接融合;然后,使用轴向注意力[14] (CA)对特

征信息分配权重; 其次, 通过 1 × 1 卷积和 2 个

Sigmoid 操作对注意力图进行调整修正;最后,再与

注意力之前特征相加得到结构细化后的分割图。 具

体计算规则如下:
F1 = CA( f1 +f2)

F′
1 = 2 × Sigmoid(1 × 1

   

ConvF1)

F = ( f1 +f2) + F·F′
1

ì

î

í

ï
ï

ïï

(2)
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　 　 其中, f1 和 f2 分别表示编码层和其对应解码上

一层的输出特征;CA 表示轴向注意操作;
 

F1 表示经

过轴向注意机制得到的注意权重图; F′
1 表示经过权

重调整后得到的修正图; F 表示特征交互模块的输

出特征图。
　 　 特征交互模块采用轴向注意力,因其不仅仅能

捕获跨通道的信息,还能捕获方向感知和位置感知

的信息。 此外,轴向注意力的计算复杂度较低,有助

于模型在不引入过多的参数的条件下更加精准地定

位和识别感兴趣的病灶结构细节。 这里的 Sigmoid
操作取 2 倍,其目的是将注意力的可调整幅度限制

到 0 ~ 2 之间,从而使病灶信息的权重得到进一步加

强,非病灶信息的权重得到更好的抑制,因此能够突

显病灶信息与背景信息之间的对比,避免模糊预测。
后续得到的轴向注意力权重修正图不仅能够更好地

突出某些病灶细节的注意力,同时也能有效抑制干

扰信息。 本模块的设计丰富了跳跃连接的形式,弥
补了特征金字塔的不足以及较为完善地模拟了人类

视觉的特性,在应用中取得了良好的表现。
1. 3　 亚像素卷积

解码阶段对于恢复肺部病灶结构细节至关重

要,常见的上采样方法有双线性插值上采样和反卷

积上采样。 其中,双线性插值上采样是基于单线性

插值,其方法实现简单,无需训练,但是会丢失信息;
反卷积上采样,顾名思义,上采样的过程是卷积操

作,就是通过先在待上采样的特征图周围补 0 后再

卷积,提高输出的分辨率。 该方法需要训练,相对于

前者能更好地还原特征信息,但是补 0 会引入无效

信息,甚至对梯度优化带来不利影响。 为了克服上

述不足,本文采用亚像素卷积(具体结构如图 5 所

示),在不失真的情况下增加图像的分辨率,并提高

图像的质量和视觉效果。
在相机成像过程中,图像数据经过离散化处理,

每个像素代表成像面上的一个区域的颜色。 由于感

光元件的限制,相邻像素之间存在间隔,即像素之间

有一定的物理距离。 这些物理距离内的像素被称为

亚像素。 从宏观角度看,这些亚像素被视为相邻像

素的一部分;但从微观角度看,这些亚像素实际上是

独立存在的,并且可能存在微小的差异。 因此,亚像

素可以看作是对图像细节的更精细的表示。 根据相

邻像素之间插值情况的不同
 

,可以调整亚像素的精

度(见图 5),例如将低分辨率 128×128 的特征图放

大 3 倍,也就是每个像素从横向和纵向上细分为 3
个像素点,变成 512×512 的尺寸大小。 这样就要先

进行隐藏层卷积操作,产生 3×3、9 张相同大小的特

征图,然后把这 9 张特征图拼接成一张放大 3 倍的

大图。 具体操作是对 9 张特征图分别取第一个像素

点,拼成 3×3 的像素块作为高分辨率图的第一个像

素块,每个像素点都执行同样的操作,即低分辨率图

一个像素点对应高分辨率图一个 3×3 的像素块,最
终实现特征图的有效放大。

Low-resolution
image(input)

Hiddenlayers Sub-pixelconclusionlayer

r2-channels

High-resolution
image(output)

图 5　 亚像素卷积

Fig.
 

5　 Subpixel
 

convolution

1. 4　 损失函数

面向肺部病灶图像进行语义分割的本质为像素

点进行逐个分类,故而采用如下交叉熵作为基本损

失函数:

LBCE = - ∑
n

i = 1
yi log

 

y′
i (3)

　 　 其中, LBCE 表示基本交叉熵损失; yi 表示标签

值; y'
i 表示预测值。
对于只分割前景和背景的二值分割场景,当前

景像素的数量远远小于背景像素的数量时,损失函

数中的 yi = 0 的成分就会占据主导,使得模型严重

偏向背景。 此外,交叉熵损失只是像素的整体概率
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分布,对于图像分割任务,却并未考虑目标的整体结

构。 基于此,本文进一步添加了 IoU 损失 LIoU:

LIoU = 1 - A ∩ B
A ∪ B

(4)

　 　 其中, A 表示计算的特征图, B 表示标签图。
整体的损失函数 Ltotal 由 IoU 损失函数(LIoU) 与

交叉熵损失函数 (LBCE) 联合组成,实现了整体结构

和小目标分割的权衡:
Ltotal =LIoU + λLBCE (5)

2　 实验与结果分析

在本节中,首先对实验配置进行介绍,如数据集、
实验设置、评价指标等;接着,将本文设计的 U 型网络

与 7 个用于肺部病灶图像分割的深度学习网络进行

性能对比;最后,详细分析数值实验结果与可视化实

验结果。 通过消融实验验证 Swin-Transformer 层、特
征交互模块和亚像素卷积的有效性。
2. 1　 数据集

本文实验主要采用 2 个公开且具备典型性的权

威肺部病灶图像集,即 COVID-19
 

CT
 

scan 数据集和

MS
 

COVID-19 数据集。 具体信息如下。
(1)COVID-19

 

CT
 

scan 数据集[15] :该数据集由

20 个注释的 COVID-19 胸部 CT 序列组成。 每一个

CT 序列内的病灶图像都是由专业放射科医生进行

验证标注。 另外,每个序列内图像的分辨率为 512×
512,平均切片个数为 176。

(2)MS
 

COVID-19 数据集[16] :该数据集由意大

利医学和介入放射学会整理发布,共收集了 40 多名

肺部感染病人的 100 张轴向 CT 图像。
2. 2　 实验设置

实验训练与测试主要在配有 NVIDIA
 

GTX
 

3090Ti 显卡的 Windows10 操作系统上进行,且本文

设计的 TF-Unet 主要利用 PyTorch 深度学习框架进

行搭建。
(1)基本设置:本文采用标准裁剪和随机翻转

方式进行数据增强,使用 5-折交叉验证来进行网络

训练与测试。 具体地,将数据集平均分成 5 份,每次

随机选取 4 份进行网络训练,1 份进行测试。 训练

及测试过程重复 5 次,直至测试完所有数据为止。
网络训练时,采用 Poly 学习率策略,即首先将

初始学习率设置为 1×10-3,随后使用 Adam 随机梯

度下降算法,以 1 × 10-4 的权重衰减率进行网络训

练,且数据集在网络中训练的往返次数为 80,批量

数为 8。 另外,便于公正客观地比较 TF-Unet 与其

余网络的分割效果,本文对于其余网络进行同样的

设置。
(2)模块设置:对于设计的 TF-Unet 内编解码

各阶段输出特征图尺寸大小分别为{256×256,128×
128,64×64,32×32,16×16},输出特征图通道数分别

设定为{32,64,128,160,256}。
2. 3　 评价指标

为了评估 TF -Unet 对于肺部病灶图像的病灶

区域与非病灶区域的分割效果。 本文采用医学影像

分析中常用的 5 种评价指标来衡量构建网络的表现

性能,包括:Dice、mIoU、SEN、以及 SPC。 其中,Dice
为 Dice 相似系数,主要用来衡量整体的像素估计类

别与真实类别之间的相似性;mloU 为平均交并比,
用于计算病灶区域像素正确归类与真实病灶区域像

素的比率;SEN 为灵敏度,表示网络对于病灶区域像

素的正确判断归类程度;SPC 为特异性,表示网络对

于非病灶区域像素的正确判断归类程度。 对于这 4
个性能指标而言,其数值越大,表示网络分割肺部病

灶图像的效果越好。 4 个评价指标表达式为:

Dice = 2 × TP
FN + 2 × TP + FP

(6)

mIoU = 1
k + 1∑

k

i = 0

TP
FN + FP + TP

(7)

SEN = TP
TP + FN

(8)
 

SPC = TN
TN + FP

(9)

　 　 其中,TP 表示病灶区域像素归类正确率;TN 表

示非病灶区域像素归类正确率;FP 表示病灶区域像

素归类错误率;FN 表示非病灶区域像素归类错误

率; k 表示图像分割区域类别数。
为了量化网络对于图像内分割区域边界的敏感

程度,本文还采用 HD(Hausdorff
 

Distance)距离来度

量图像分割前后 2 组像素点集之间的最近距离,其
表达式为:

h(A,B) =max
a∈A

{min
b∈B

{d(a,b)}} (10)

　 　 其中, a 和 b 分别表示像素集合 A 和 B 内的点;
d(a,b) 表示像素点 a 和 b 之间的欧氏距离。 对于

HD 而言, 其数值越小, 代表着网络的分割效果

越好。
2. 4　 对比验证

为了验证所构建 U 型网络的优越性,本文进行

了大量的对比实验。 参与对比实验的分割网络共 7
个, 分 别 为 UNet[3] 、 UNet + +[17] 、 PraNet[18] 、
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MedT[19] 、MiniSeg[10] 、MT-UNet[20]和 UNext[11] 。
2. 4. 1　 数值结果对比

采用 2. 2 节规定的实验设置,在 2 个数据集上

进行网络性能对比实验,最终得到了相应的结果。
需要说明的是,受篇幅限制,在此仅以在 COVID-19

 

CT
 

scan 数据集上的结果为例,详细分析比较各个网

络的表现性能。
表 1 记录了 TF-Unet 与 7 个其他优秀模型在

COVID-19
 

CT
 

scan 数据集上取得的 5 个性能指标

结果。 从表 1 可以看出,基于纯卷积的模型性能要

比融合注意力机制的模型性能差一些,原因是纯卷

积的方法缺乏对非线性特征的提取能力以及无法建

模全局上下文信息。 本文所设计的 Transformer 特

征交互的 U 型网络在 5 个评价指标上皆取得了最

优的结果。 Dice 系数达到了 0. 791
 

6,平均 IoU 达到

了 0. 853
 

2, SEN 达 到 了 0. 869
 

5, SPC 达 到 了

0. 997
 

7,HD 距离达到了 0. 536
 

4。

表 1　 TF-Unet与非轻量级网络在COVID-19
 

CT
 

scan上的指标结果

Table
 

1 　 Experimental
 

results
 

of
 

the
 

TF - Unet
 

and
 

the
 

non -

lightweight
 

networks
 

on
 

COVID-19
 

CT
 

scan
 

networks %

模型 Dice mIoU SEN SPC HD

UNet[3] 64. 96 75. 78 82. 27 98. 82 131. 84

UNet++[17] 68. 52 78. 50 71. 77 99. 14 75. 63

PraNet[18] 76. 51 82. 70 76. 25 99. 12 74. 85

MedT[19] 73. 67 77. 04 82. 15 99. 32 63. 38

MiniSeg[10] 77. 35 82. 55 84. 06 98. 46 70. 62

MT-UNet[20] 70. 25 73. 73 67. 09 99. 27 76. 62

UNext[11] 78. 01 84. 78 84. 59 99. 57 56. 42

TF-UNet 79. 16 85. 32 86. 95 99. 77 53. 64

　 　 因此,本文所构建的 TF-UNet 面向肺部病灶图

像能够取得较好的分割结果。 相似的结果与结论在

MS
 

COVID-19 数据集上同样可以得到。
2. 4. 2　 可视化结果对比

为了清晰直观地体现本文模型在肺部病灶图像

的分割效果,图 6 展示了 TF-Unet 与现有最新图像

分割网络的可视化对比实验结果,可以清晰地发现

TF-Unet 对于肺部病灶图像的分割效果明显优于

其它网络。 特别是第 2 列、第 5 列内,对于小目标对

象以及不连续的目标对象,本文模型更加敏感且分

割精度更高,这主要得益于 Swin -Transformer 层对

于全局信息的把握、特征交互模块对于多尺度信息

的捕捉以及亚像素卷积对于图像分辨率的有效

还原。

(a)Input

(b)UNet[3]

(c)UNet++[17]

(d)PraNet[18]

(e)MedT[19]

(f)MiniSeq[10]

(g)MT-UNet[20]

(h)UNext[11]

(i)TF-Unet

(j)GT

图 6　 不同分割网络输出的可视化对比分割图

Fig.
 

6 　 Visualization
  

segmentation
 

output
 

comparison
 

of
 

different
 

segmentation
 

networks

2. 5　 消融实验

本文在肺部病灶区域分割模型中引入了 Swin-
Transformer 层、特征交互模块和亚像素卷积,以改善

分割性能。 为了验证这些模块的有效性,本文使用

UNext[11]作为基线模型,并进行了消融实验。 具体

实验设置包括以下几种模型:基线模型;基线模型+
Swin-Transformer 层;基线模型+Swin-Transformer 层+
特征交互 FI 模块;线模型+Swin-Transformer 层+特

征交互 FI 模块+亚像素 sub-pixel 卷积、即本文提出

的 TF-Unet 网络模型。 通过消融实验结果,可以评
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估这些模块对于肺部病灶区域分割性能的影响。 参

与消融实验的所有 U 型网络见表 2。

表 2　 参与消融实验的所有 U 型网络

Table
 

2 　 All
 

U - shaped
 

networks
 

involved
 

in
 

the
 

ablation
 

experiments

模型 SW FI Sub-pixel

基线模型

SW √

SW+FI √ √

TF-Unet √ √ √

　 　 随后,以在 MS
 

COVID-19 数据集上取得的实

验结果为例,详细分析设计的各个模块的有效性。
表 3 记录了参与消融实验的网络在 MS

 

COVID-19
数据集上取得的 5 个性能指标值。 对比基线模型和

加入 SW 层的网络取得的 5 个指标值可以看出,前 4
个指标值随着 Swin-Transformer 层的加入而有所提

升,最后一个指标值随着其加入而降低,这说明

Swin-Transformer 层能够在低层编码阶段有效地捕

捉全局信息,并且抑制图像内噪声产生的不良影响。
通过对比加 SW 和加 SW+FI 取得的指标值,则可以

看出指标 Dice、mIoU、SEN、SPC 分别提升了 0. 44%、
0. 66%、3. 76%、0. 45%,指标 HD 降低了 2. 58%。 这

证实了特征交互模块能够融合多尺度不同特征,恢
复图像的结构细节。 比较加 SW+FI 和 TF-Unet 取
得的最终指标值可以发现,指标 Dice、mIoU、SEN、
SPC 分别提升了 0. 08%、0. 32%、0. 22%、0. 20%,指
标 HD 降低了 0. 83%,这表明亚像素卷积能够有效

放大图像。 从 TF-Unet 取得的指标结果可以看出,
所有指标值都达到了最优。

 

表 3　 参与消融实验的分割网络在MS
 

COVID-19上的实验结果对比

Table
 

3 　 The
 

experimental
 

results
 

comparison
 

of
 

all
 

segmentation
 

networks
 

involved
 

in
 

the
 

ablation
 

experiments
 

on
 

MS
 

COVID-19 %

模型 Dice mIoU SEN SPC HD

基线模型
 

75. 17 81. 42 80. 39 96. 98 76. 84

SW 75. 61 81. 79 81. 38 97. 37 74. 89

SW+FI 76. 05 82. 45 85. 14 97. 82 72. 31

TF-Unet 76. 13 82. 77 85. 36 98. 02 71. 48

　 　 为了直观地了解各模块的作用,本文选取了部

分分割结果进行对比,具体如图 7 所示。 从第 3 列

的前 2 张分割图可以看出,Swin-Transformer 层的全

局注意力可以捕捉到遗漏的病灶信息;对比第 2 列

的第 2、3 张分割图可以发现,特征交互模块可以更

好地恢复图像的结构细节,特别是对于微小非病灶

区域的判别能力很强;对比第 1 列的第 3、4 张分割

图可以看到,亚像素卷积可以对分割的缩略图进行

有效的放大;将各种模型与标签图对比,可以发现在

纹理结构较为复杂的 CT 图像中,TF-Unet 得到的分

割图最为精准完整。

(a)Input

(b)UNext

(c)UNext+SW

(d)UNext+SW+FI

(e)TF-Unet(本文方法）

(f)GT

图 7　 消融实验输出的可视化对比分割图

Fig.
 

7　 Visualization
  

segmentation
 

output
 

comparison
 

of
 

ablation
 

experiment

3　 结束语

针对肺部病灶图像采用 U 型网络自动分割的

问题,本文提出了一种基于 Transformer 特征交互的

U 型网络 TF-Unet。 首先,在低层的编码环节添加

了 Swin-Transformer 层,有助于网络在提取低层信

息时,强化对全局特征信息的关注,全面定位复杂多

变的肺部病变阴影;改造跳跃连接的固有设计,搭建

特征交互模块融合编解码不同层之间的多尺度信
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息,修正注意力图的操作能够更加清晰地恢复病灶

结构细节;将亚像素卷积应用到上采样的过程中,实
现分割结果图的高效还原。 此外,本模型构建的联

合损失函数,对于整体结构和小目标的分割起到加

强的效果。 实验结果表明:本文提出的 U 型网络分

割方法的性能明显优于其他医学图像分割模型。 在

以后的工作中,将对网络进行半监督或无监督学习

的训练方式[21] ,减少对于大量标注的医学数据的依

赖,有效利用无标注图像来提高分割精度。
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