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摘　 要:
 

随着水质环境的持续恶化,作为水体富营养化的重要评价指标,叶绿素 a 浓度受到了研究者的广泛关注。 由于叶绿

素 a 浓度受光照、温度、营养物质、氧含量等多因素的影响,使得叶绿素 a 浓度的预测极具挑战性。 本文收集了加拿大海洋网

监测的多种海洋观测数据,包括叶绿素 a 浓度、水温、气温、风速等 9 种因素,结合相关系数分析变量间的线性相关性,并针对

以往模型在对输入数据间非线性关联方面能力弱的问题,提出了结合自注意力机制的 LSTM(SA-LSTM)预测模型。 该模型

能够更好地适应不同时间点的输入,增强了对输入序列关键信息的捕捉能力,同时可以灵活地捕捉序列中的长距离依赖关

系,提高预测的性能。 通过与其他方法的实验比对表明,该方法在不同的时间步上,均取得最小误差与最好的拟合效果。
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Abstract:
 

With
 

the
 

continuous
 

deterioration
 

of
 

water
 

quality
 

and
 

environment,
 

the
 

concentration
 

of
 

chlorophyll
 

a,
 

as
 

an
 

important
 

evaluation
 

index
 

of
 

water
 

eutrophication,
 

has
 

received
 

extensive
 

attention
 

from
 

researchers.
 

The
 

prediction
 

of
 

chlorophyll
 

a
 

concentration
 

is
 

extremely
 

challenging
 

because
 

it
 

is
 

affected
 

by
 

multiple
 

factors
 

such
 

as
 

light,
 

temperature,
 

nutrients,
 

and
 

oxygen
 

content.
 

In
 

this
 

paper,
 

a
 

variety
 

of
 

ocean
 

observation
 

data
 

monitored
 

by
 

the
 

Canadian
 

Ocean
 

Network
 

are
 

collected,
 

including
 

nine
 

factors,
 

such
 

as
 

chlorophyll
 

a
 

concentration,
 

water
 

temperature,
 

air
 

temperature,
 

and
 

wind
 

speed,
 

et
 

al.
 

Combined
 

with
 

the
 

correlation
 

coefficient
 

to
 

analyze
 

the
 

linear
 

correlation
 

between
 

variables,
 

and
 

aiming
 

at
 

the
 

problem
 

that
 

the
 

previous
 

models
 

have
 

weak
 

ability
 

to
 

nonlinear
 

correlation
 

between
 

input
 

data,
 

an
 

LSTM
 

(SA-LSTM)
 

prediction
 

model
 

combined
 

with
 

self-attention
 

mechanism
 

is
 

proposed.
 

The
 

model
 

can
 

better
 

adapt
 

to
 

the
 

input
 

at
 

different
 

time
 

points,
 

enhance
 

the
 

ability
 

to
 

capture
 

the
 

key
 

information
 

of
 

the
 

input
 

sequence,
 

and
 

flexibly
 

capture
 

the
 

long - distance
 

dependencies
 

in
 

the
 

sequence,
 

so
 

as
 

to
 

improve
 

the
 

prediction
 

performance.
 

Experimental
 

comparison
 

with
 

other
 

methods
 

shows
 

that
 

the
 

method
 

achieves
 

the
 

minimum
 

error
 

and
 

the
 

best
 

fitting
 

effect
 

at
 

different
 

time
 

steps.
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0　 引　 言

近年来,海洋环境污染以及水体的富营养化问

题已不容忽视,导致有害藻华的爆发频次呈增加趋

势,因此现阶段对水体的监测以及预测变得尤为重

要[1-2] 。 而叶绿素 a(Chl-a)浓度作为水体富营养化

程度的重要评判指标,成为了广大研究者的首要预

测目标[3] 。
利用实时监测的海洋环境因子数据,运用神经

网络的方法对叶绿素 a 浓度进行预测,是目前主要

预测手段之一,例如裴洪平等学者[4] 利用 BP 神经

网络方法预测西湖叶绿素 a 的浓度,利用水温和叶

绿素 a 浓度作为输入变量,证明了人工神经网络对

叶绿素 a 的预测的可行性。 卢志娟等学者[5]通过将



小波分析与神经网络结合,较为理想地预测了叶绿

素 a 浓度的短期变化趋势。 此外,还有研究者通过

对 BP 神经网络的改进或与别的模块结合[6-11] 来提

高预测精度。 但 BP 神经网络在处理小样本以及多

变量数据样本的时候容易出现过拟合现象[12-13] ,即
便可以得到不错的训练效果,也不一定能有很好的

预测效果。
随着深度学习的快速发展,越来越多的研究者

将叶绿素 a 浓度预测与深度学习结合,用来解决模

型过拟合问题,例如 Shin 等学者[14]利用 LSTM 以及

海表温度对水华进行预测。 Wang 等学者[15] 利用

LSTM 进行时空分布建模,在叶绿素 a 浓度的未来

值预测上取得了良好成效。 然而不管是利用传统的

统计学方法、机器学习方法还是深度学习方法,要想

得到令人满意的预测效果,不仅要结合多变量进行

预测,更要准确地分析各变量在时空上的分布规律。
因此本文提出了基于多变量与自注意力机制的

LSTM 预测模型,不仅分析各要素对叶绿素 a 浓度

的影响,还要分析各要素内部在不同时间步上对叶

绿素 a 浓度产生的不同影响,并对其分配不同的权

重,以此提高预测的准确度,解决模型的梯度消失或

爆炸等问题。

1　 相关理论和研究方法

1. 1　 自注意力机制

注意力机制原理如图 1 所示。 图 1 中,利用

Query 和 Key 的注意力汇聚,即通过计算 Query 和

Key 的相关性,再根据相关性去寻找最合适的 Value
值,来实现对 Value 的注意力权重分配,生成最终的

输出结果。

Key1 Key2 Key3 Key4

Value
1

Value
2

Value
3

Value
4

Query

Source

Attention
Value

图 1　 Attention 机制原理图

Fig.
 

1　 Schematic
 

diagram
 

of
 

the
 

Attention
 

mechanism

　 　 自注意力机制的计算过程主要分为 3 个阶段,
如图 2 所示。
　 　 (1)阶段 1。 根据各个输入的 Query (Q) 和 Key
(K) 的值,计算两者间的相关性,得到注意力得分,
而自注意力机制一般采用点积法计算,计算公式如

下:
Similarity(Q,K) = Q·KT (1)

　 　 (2)阶段 2。 是对阶段 1 得到的注意力得分进

行缩放(除以维度的根号),再到 Softmax 层,经过

Softmax 的归一化后,每个值为一个大于 0 且小于 1
的权重系数,且总和为 0,这个结果可以被理解成一

个权重矩阵。 一般采用如下公式来计算:

α = Softmax(QK
T

dk

) (2)

　 　 (3)阶段 3。 使用阶段 2 得到的权重矩阵,乘以

Value 值,计算加权求和,得到最终的计算结果,采
用下式进行计算:

Attention(Q,K,V) = Softmax(QK
T

dk

)V (3)

　 　 其中, Q,K,V 都是来自自己。 V 表示当前关注

点的重要程度;KT 表示此时被注意的 token,这里

token 表示输入序列中的一个位置(或时间步)对应

的元素数值; dk 表示 Key 的维度。

Key1 Key2 Key3 Key4

F(Q,K) F(Q,K) F(Q,K) F(Q,K)Query

S1 S2 S3 S4

类SoftMax（）归一化

a1 a2 a3 a4

阶
段
1

阶
段
2

阶
段
3

Attention
Value

Value1 Value2 Value3 Value4

图 2　 Attention 机制计算过程原理图

Fig.
 

2 　 Schematic
 

diagram
 

of
 

the
 

computational
 

process
 

of
 

the
 

Attention
 

mechanism

　 　 自注意力机制实际上是想让模型注意到整个输

入中不同部分之间的相关性,是注意力机制的变体,
既减少了对外部信息的依赖,也更擅长捕捉数据或

特征的内部相关性。 自注意力机制的关键点在于,
Q、K、V 是同一个源,或者说三者来源于同一组元

素。 通过 X 找到其中的关键点,从而更关注内部的

关键信息,忽略掉不重要信息。 尤需指出的是,这不

是输入语句和输出语句之间的注意力机制,而是输

入语句内部元素之间或者输出语句内部元素之间发

生的注意力机制。
1. 2　 长短期记忆神经网络

长短时记忆神经网络(
 

Long
 

Short-Term
 

Memory,
LSTM)是基于循环神经网络做出的特殊改进,使其

具有“门”结构,进而利用门单元的逻辑控制能力来
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决定数据是否更新或是选择丢弃,基本上克服了

RNN 权重影响过大、容易产生梯度消失和爆炸的缺

点,使网络可以更好、更快地收敛,能够有效提高预

测精度。 LSTM 神经网络结构如图 3 所示。 由图 3
可知,LSTM 有 3 个门,分别为遗忘门、输入门、输出

门,以此决定每一时刻信息记忆与遗忘。
 

其中,输入

门是用于决定有多少新的信息加入到细胞当中,遗
忘门是用于控制每一时刻信息是否会被遗忘,输出

门是用于决定每一时刻是否有信息输出,以及用于

调控信息输出的容量。

Ct-1

ht-1

ft it Ct

Ot

Ct

ht

tanh

输出门输入门遗忘门

xt

σ σ tanh σ

ht

图 3　 LSTM 神经网络结构

Fig.
 

3　 Structure
 

diagram
 

of
 

a
 

neural
 

network
 

for
 

Long
 

Short -

Term
 

Memory

　 　 整个计算过程可以表示为:
ft = σ(Wf[ht -1,xt] + bf) (4)
it = σ(Wi[ht -1,xt] + bi) (5)

ct = tanh(Wc[ht -1,xt] + bc) (6)
C t = ftC t -1 + itct (7)

Ot = σ(Wo[ht -1,xt] + bo) (8)
ht = Ot tanh(C t) (9)

　 　 其中, ft 表示遗忘门信息;it 表示输入门输入;
Ot 表示输出门信息;ht 表示最终输出;ct 表示输入节

点;C t 表示单元细胞状态;tanh 和 σ 都是激活函数;
Wf,Wi,Wo,Wc 表示模型权重矩阵,bf,bi,bc,bo 表示

各自对应的偏置值。
研究中采用 LSTM 模型进行训练,是因为 LSTM

可用于处理时序数据,特别是对于存在长期依赖关

系的数据。 在多变量时间序列中,不同变量之间可

能存在复杂的时序依赖,LSTM 能够捕捉这些依赖

关系。 LSTM 能够学习数据中的序列模式,包括时

间相关的模式和不同变量之间的交互模式。 这使其

在多变量时间序列问题中表现出色,尤其是当变量

之间存在非线性关系时。 对于不同时间点变量数目

不同的情况,LSTM 能够处理变长序列,因为其设计

结构允许动态地处理输入序列的长度。 在训练过程

中可以自动学习数据的抽象特征,无需手动提供。

这对于多变量时间序列中包含信息较多的情况颇具

优势。 当多变量时间序列中存在复杂的非线性模式

或多变量之间存在滞后关系时,LSTM 也能够更好

地适应和捕捉这些复杂的模式。

2　 相关工作

2. 1　 数据预处理

本次实验的数据集为多变量数据,且每个变量

不在一个量级范围,为了方便反映数据间的更多特

征,在实验前先对数据进行标准归一化处理,公式如

下:

x′ =
x - xmin

xmax - xmin
(10)

　 　 其中, x′ 表示标准化处理后的数据;x 表示原数

据;xmax 和 xmin 分别表示该类变量序列数据中的最大

值和最小值。 经过上述处理后,使得各项数据都在

0 ~ 1 之间。 进而利于后续数据的进一步处理以及

训练。
2. 2　 相关性分析

本文实验数据采用的是多变量预测,因此本文

将对要素间的相关性进行分析,对于相关性极低的

变量因子加以剔除,而保留相关性相对较高的环境

因子,以此降低数据维度,加快训练。 研究可知,相
关性分析方法有 Pearson 相关系数、Spearman 相关

系数、Kendall 相关系数三大类。 本文采用 Pearson
相关系数,公式如下:

R(X,Y)= cov(X,Y)
σX·σY

= E(XY) -E(X)E(Y)

E(X2) -E2(X) E(Y2) -E2(Y)
(11)

其中, cov(X,Y) 表示 2 个变量间的协方差;σ
表示标准差;R的值一般在 - 1 ~ 1之间,大于0表示

两者正相关,小于 0 则负相关,且值越接近 0,表示相

关性越差,而越接近两端,表示相关性越强。
此外,为了更加可视化地呈现数据间的相关性,

使用散布矩阵方法对所有变量进行分析,就是以矩

阵的形式显示多个变量之间的散点图,通过对散点

图的观察不仅可以识别可能存在的异常值或异常模

式,减小分析误差,还能了解每个变量的数据分布特

征以及多变量数据集的结构和特征。 散布矩阵等于

(n - 1) 倍的协方差矩阵,计算公式如下:

C = ∑
n

j = 1
(x j - x-) ×(x j - x-) T (12)

　 　 其中, j表示每一个变量的长度;xj 表示m × n矩阵

的第 j 列;x- 表示样本的均值; “T”表示矩阵的转置。
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2. 3　 预测模型

叶绿素 a 浓度预测流程如图 4 所示。 首先将提

取的多变量海洋观测要素按照时间顺序进行整合,然
后对数据的缺失值以及异常值进行插补、删除和替换

处理,保证数据的连续性和完整性,提高预测结果的

准确性。 将预处理后的完整数据作为输入数据进行

归一化处理,确保各项数据都在同一量级,而后作为

LSTM 模型的输入。 利用 LSTM 模型不同变量之间存

在的复杂时序依赖关系以及各变量的时间特征,再将

变换后的 LSTM 层的输出经过自注意力机制层,学习

不同变量之间的权重,捕捉各序列内部不同时间步之

间的长程依赖关系。 最后,将不同变量的信息通过连

接层融合在一起,进行加权求和,并输出最终结果。

数
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处

理

LS
TM

层

Se
lf-

A
tte

nt
io
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co
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T
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输
出

图 4　 叶绿素 a 浓度预测流程图

Fig.
 

4　 Flowchart
 

of
 

chlorophyll
 

a
 

concentration
  

prediction

3　 实验结果与分析

3. 1　 实验环境

本次实验采用目前深度学习最为流行的 Pytorch
框架进行实验, 采用 GPU 加速, GPU 为 NVIDIA

 

GeForce
 

RTX
 

2080
 

Ti。 具体的实验环境配置包括

Windows
 

10 专业版 64 位的操作系统,Intel(R)
 

Core
(TM)

 

i7-9700K
 

CPU
 

@
 

3. 60
 

GHz 的处理器,16
 

GB

的内存;编程软件包括 PyCharm
 

Community
 

Edition
 

2023. 2. 5、
 

Python3. 11 以及 CUDA12. 1。
3. 2　 实验数据

本次实验采用的数据集来自加拿大海洋网 Arctic-
Cambridge

 

Bay - Shore
 

Station 和 Underwater
 

Network
观测站。 该数据集中包含了多种不同传感器监测到

的不同海洋观测数据。 包括水温(WT)、气温(T)、导
电率( Cond)、盐度( Sal)、风速 ( Wind _ v)、氧含量

(DO)、叶绿素 a 浓度(Chl-a)、浊度(Turb)和传导率

(Den)等。 将观测站所观测的同一海域的不同观测

值整合到一个表格组成该实验的数据集,其中每个观

测变量包含 7
 

681 条数据,时间范围为 2019 年 9 月 1
日到 2019 年 11 月 20 日,每隔 15

 

min 采样一次数据。
3. 3　 数据预处理和相关性分析

在进行模型训练前,先利用专门的数据处理工

具 IBM
 

SPSS
 

Statistics
 

27 对各变量的缺失值进行了

多重插补,以保证数据的完整性,而后利用该工具对

实验数据进行了 Pearson 相关分析,主要分析叶绿

素 a 浓度变量与其他各要素间的相关性,具体见表

1,又利用散度矩阵方法对各数据进行了相关性的可

视化分析,如图 5 所示。
　 　 从表 1 中可以看出,该组实验数据中叶绿素 a 浓

度与传导率、盐度和导电率呈现负相关,而与其他要

素呈正相关,并且与水温、气温、盐度、氧含量以及传

导率的相关性较强,和浊度的相关性适中,与风速和

导电率的相关性较弱。 可根据实验数据以及维度的

复杂程度选择是否在实验中加入这 2 个变量,来进行

数据降维处理。 本实验中就加入了以上全部数据。
再利用标准归一化处理将数据集中的所有数据统一

在同一量级,归一化处理的数据结果如图 6 所示。

表 1　 目标序列与相关序列间的 Pearson 系数

Table
 

1　 Pearson
 

coefficient
 

between
 

the
 

target
 

sequence
 

and
 

the
 

related
 

sequence

因素 WT T Sal Cond Wind_v DO Turb Den Chl-a

PCC 0. 514 0. 462 -0. 622 -0. 120 0. 115 0. 623 0. 365 -0. 631 1. 000

3. 4　 实验评价指标

本文采用平均绝对误差( Mean
 

Absolute
 

Error,
 

MAE) 和 均 方 误 差 ( Root
 

Mean
 

Squared
 

Error,
 

RMSE)来对实验结果进行评价。 其中,MAE 衡量了

预测值和实际值之间的平均绝对误差。 但对异常值

不敏感,因为 MAE 使用的是绝对值,而不是平方。
RMSE 为相对误差,是预测值和实际值之间平方误

差的平均值的平方根,对预测误差的幅度更为敏感。
研究推得计算公式如下:

MAE = 1
N∑

N

i = 1
| yi - ypre

i | (13)

RMSE = 1
N∑

N

i = 1
(yi - ypre

i ) 2 (14)

　 　 其中, N 表示序列的长度,即样本的总长度;yi

表示此时样本的真实观测值;yi
pre 表示该时刻对样

本的预测值。 这 2 个指标都是越小越好,表示模型

预测越准确。
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图 5　 散布矩阵结果图
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图 6　 数据归一化处理结果图

Fig.
 

6　 A
 

graph
 

of
 

the
 

results
 

of
 

data
 

normalization
 

processing

3. 5　 实验过程与分析

为了将本文的研究方法与其他研究结果加以对

比分析,本文加入了几个具有代表性的时间序列预

测模型进行对比实验,具体包括:
(1)支持向量机( SVM)模型[16] 。 SVM

 

可以通

过核技巧将数据映射到高维空间,有助于更好地捕

捉多变量之间的复杂关系。 这对于包含多个变量的

时间序列数据非常重要,因为变量之间可能存在复

杂的交互关系。
(2)

 

BP 神经网络
 

( Back - Propagation
 

neural
 

network) [17] 。 由于反向传播神经网络能够建模复杂

的非线性关系、具有自适应学习能力,因此在叶绿素

a 浓度的预测中被广泛应用。
(3)Seq2Seq( Sequence -to -Sequence) 模型[18] 。

是一种用于序列到序列问题的神经网络结构,采用

编码器和解码器结构,可捕捉多变量时间序列间的
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长期依赖关系。
( 4 ) ARIMA ( AutoRegressive

 

Integrated
 

Moving
 

Average)模型[19] 。 是一种经典的时间序列分析方

法,用于预测未来的数值。 ARIMA 模型包括自回归

(AR)、差分(I)和移动平均(MA)三个部分。
(5) 长短期记忆神经网络 ( LSTM) 模型[20] 。

LSTM 模型常用于处理多变量时间序列预测,无论

是在单变量输出、还是多变量输出中都有广泛应用,
尤其是在股价和天气预测方面。

本文利用以上实验方法与 SA-LSTM 方法进行

实验对比,分别记录了时间步长为 6 和时间步长为

12 时各模型的的 MAE 和 RSME 结果,见表 2。
表 2　 模型比对结果表

Table
 

2　 Comparison
 

results
 

of
 

models

模型
T = 6

RMSE MAE

T = 12

RMSE MAE

SVM 1. 263 0. 874 1. 302 0. 926

BP 1. 075 0. 723 1. 108 0. 774

ARIMA 1. 129 0. 835 1. 172 0. 858

Seq2Seq 0. 882 0. 626 0. 932 0. 703

LSTM 0. 732 0. 534 0. 755 0. 582

SA-LSTM 0. 648 0. 463 0. 692 0. 507

　 　 从表 2 中可以看出,本实验所用研究方法无论

是在哪个时间步长上,在 MAE 和 RMSE 的评价指标

结果中,都要比其他几种方法效果好,而且随着时间

步长的增加,对应的 MAE 和 RMSE 也在随之增加,
模型预测的误差加大。 可见使用较长的时间步可能

导致丢失一些细节信息,特别是对于需要在较短时

间内做出决策的任务,而较短的时间步可能使模型

更具灵活性,能够更敏感地捕捉数据中的短期变化。
为了更直观地展示出 SA -LSTM 的预测效果,

本实验利用样本的 30%作为测试值,测试模型的预

测效果如图 7 所示,该图绘制了时间步长 T = 6、
batch

 

size = 64、 迭代次数为 300、 初始学习率为

0. 001 时的预测效果图,其中蓝线表示叶绿素 a 的

真实浓度值,橙线表示测试集中的预测值。
　 　 从图 7 中可以看出,叶绿素 a 浓度存在多次的

突变情况,而就是这种情况表明,一旦叶绿素 a 浓度

值超过了一定的阈值,就可能是有害藻华的爆发,因
此对突变值的预测尤为重要。 从图 7 中也可以看

出,该模型在对叶绿素 a 浓度正常值的预测中效果

颇佳,对于浓度的突变值也有一个很好的预测效果

或者趋势变化体现。
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图 7　 SA-LSTM 预测效果图

Fig.
 

7　 Prediction
 

rendering
 

of
 

SA-LSTM

4　 结束语
 

本文在基于单变量预测以及 LSTM 模型预测的

基础上, 提出了基于多变量与自注意力机制的

LSTM 神经网络叶绿素 a 浓度预测模型,通过自注

意力机制来挖掘数据间存在的长距离依赖关系,并
捕捉不同时间步上数据所表征出的不同重要程度,

并赋予其不同的权重,以此提高预测准确性。 该模

型将多种传感器所监测的海洋环境因子数据和气象

数据等多源数据作为输入,通过实验比对表明,该方

法具有比其他方法更小的预测误差和更好的拟合效

果。 尤其在突变数据的预测上,该模型取得了良好

的预测效果。 可见,该模型在海洋灾害预警方面有

着很好的应用前景。
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