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Research on the prediction model of chlorophyll a concentration
based on self—attention mechanism

CHEN Fang, CHEN Jun, JIANG Naiqi, MENG Weiqiang

(College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China)

Abstract; With the continuous deterioration of water quality and environment, the concentration of chlorophyll a, as an important
evaluation index of water eutrophication, has received extensive attention from researchers. The prediction of chlorophyll a
concentration is extremely challenging because it is affected by multiple factors such as light, temperature, nutrients, and oxygen
content. In this paper, a variety of ocean observation data monitored by the Canadian Ocean Network are collected, including nine
factors, such as chlorophyll a concentration, water temperature, air temperature, and wind speed, et al. Combined with the
correlation coefficient to analyze the linear correlation between variables, and aiming at the problem that the previous models have
weak ability to nonlinear correlation between input data, an LSTM ( SA-LSTM) prediction model combined with self-attention
mechanism is proposed. The model can better adapt to the input at different time points, enhance the ability to capture the key
information of the input sequence, and flexibly capture the long—distance dependencies in the sequence, so as to improve the
prediction performance. Experimental comparison with other methods shows that the method achieves the minimum error and the
best fitting effect at different time steps.

Key words: concentration of chlorophyll a; self-attention mechanism; multivariate; Long Short—-Term Memory neural networks
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Fig. 1 Schematic diagram of the Attention mechanism
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Fig. 4 Flowchart of chlorophyll a concentration prediction
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Fig. 5 Dispersion matrix result plot
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