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Structure analysis and optimization design of track fine—tuning clamp
SUN lJiafeng, YU Chaogang, ZHU Wenliang

(School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China)

Abstract: Aiming at the problems of low efficiency and insufficient precision in the current construction work of gauge fine
adjustment, a gauge fine adjustment train applied to railway system is designed, and topological optimization is carried out with its
clamp parts as the object. After the secondary design, an optimization design method combining response surface method and Multi—
Objective Genetic Algorithm ( MOGA ) is proposed to realize the optimal design. The finite element model of the clamp part is
established, and the static analysis is carried out to show that it has redundancy under the condition of meeting the rigidity and strength
requirements. The topological optimization module of Workbench is used to optimize the gripper, and the gripper structure is designed
twice and verified by statics analysis to ensure that the gripper met the optimization objectives, but there is still optimization potential.
The Central Composite Design (CCD) method is used to simulate 7 design variables of the gripper, and the response surface proxy
model between the design variables and the mass, the maximum deformation and the maximum equivalent stress is established. The
results show that the mass of the claw is reduced by 16. 8%, the maximum deformation is increased by 0. 006 93 mm, and the
maximum equivalent stress is reduced by 8. 63 MPa, which is far less than the allowable value. The optimization effect is
remarkable, and the optimized gripper can meet the requirements of the track fine adjustment operation.

Key words: fine adjustment of gauge; clamp parts; topology optimization; response surface method; Multi—Objective Genetic Algorithm
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Fig. 1 Gauge fine—tuning structure
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Fig. 2 Structure design of fine—adjusting mechanism
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Fig. 3 Working principle of fine—adjusting mechanism
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Table 1 Physical characteristics of gripper material
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Fig. 6 Displacement cloud image of left clamp claw
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Fig. 8 Topology optimization results of left gripper
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Table 2 Initial value and value range of each design variable of the

clamp mm

i ERNAE BIPEEAR BRI BUETE
P1 Je N5 165.0 145 ~ 170
P2 i ayiiift 25.0 15 ~ 30
P3 F AR 25.0 20 ~ 30
P4 A 35.0 32 ~ 42
P5 ST 37.5 34 ~ 44
P6 L 85.0 80 ~ 110
P7 FhC R AL 20.0 16~24
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Table 3 CCD test design samples and target response values
B 5/ mm M S (L
21531
P1 P2 P3 P4 P5 P6 P7 P8/ kg P9/ mm P10/ MPa
1 157.50 22.50 25.00 37.00 39.00 95. 00 20. 00 6.25 0.12 145. 60
2 145. 00 22.50 25.00 37.00 39.00 95.00 20. 00 5.73 0.13 151. 68
3 170. 00 22.50 25.00 37.00 39.00 95. 00 20. 00 6.76 0.12 140. 02
50 150. 88 26.46 22.35 34.35 36.35 102.93 22.11 5.83 0.13 133.35
71 164. 11 18.53 27.65 39. 65 41.65 102. 94 17.88 6.55 0.13 148.95
78 150. 89 26.47 27.65 39.65 41.65 102. 94 17. 88 6.17 0.12 126. 36
79 164. 11 26.47 27.65 39.65 41.65 102. 94 22.12 6.45 0.12 127. 14
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Fig. 15 Response surfaces of P1, P3 and gripper mass
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Fig. 16 Response surfaces of P2, P3 and maximum deformation
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Fig. 17 Response surfaces of P2, P3 and maximum equivalent stress
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Table 4 Response surfaces fitting accuracy
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Fig. 18 The actual value and predicted value of each response target

Predicted from the Response Surface
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Fig. 19 Optimization process of MOGA genetic algorithm
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Table 5 Comparison of results before and after design optimization
. B B/ mm LI VASE7N
VES
Pl P2 P3 P4 P5 P6 P7 P8/ kg P9/ mm P10/ MPa
1 147. 61 29.872 21.558 40. 965 34. 146 102. 710 23.425 5.6710 0.12195 109. 29
2 145.27 29.872 21.562 38.784 34.234 83.017 16.225 6.188 1 0.109 11 102.95
3 147. 63 29.501 21.566 41.957 42.040 106. 550 23.675 5.4289 0.12996  112.62
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Fig. 20 Cloud image of the displacement of the rounded gripper
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Fig. 21 Equivalent stress cloud diagram of the rounded gripper
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Table 6 Comparison results of parameters and performance indexes before and after two optimizations

. BiE R/ mm PEREFE bR
P1 P2 P3 P4 P6 P7 P8/ kg P9/ mm P10/ MPa
AT 165.0 25.0 25 35.0 37.5 85.0 20 6.8263 0.11461  130.86
fitb)s 148.0 30.0 21 41.0 35.0 103.0 23 5.6799 0.12154  122.23
AR 17.0 -5.0 4 -6.0 -18.0 -3 1.1464 -0.00693  8.63
BER/ % 10.3 -16.7 16 -17.1 21.2 -15 16.8000 -6.050 00  6.59
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