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Multi-level iterative stereo matching method based on combined cost volume
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Abstract; Stereo matching is an important technology in computer vision. The technique recovers depth information from scene
images taken from two or more perspectives and is widely used in many scenarios such as autonomous driving, robotics, and 3D
modeling. In view of the fact that the current stereo matching methods bring a lot of computational and memory costs while using 3D
convolution processing, as well as poor performance in occluded and textureless areas in the image, a multi-level iterative end—to—
end stereo matching method based on combined cost volume is proposed. By introducing a combined cost volume, the feature
information in the cost volume is increased, while the number of iterations is reduced without affecting the effect of the predicted
disparity map. Multi-level pooling and contextual attention mechanisms are introduced in the context network to further improve the
network performance. Experiments show that this method has achieved good results compared with the baseline model on Scene
Flow, KITTI2012/2015, Middlebury2014 and ETH3D datasets.
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Fig. 1 Overall network framework
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Table 1 The size and application scenarios of various data sets

Dataset Train/Test IAREE75 8
Scene Flow 35 454/4 370 SIRPERCADE
ST 55
KITTI2012 194/195 SN S 8575
KITTI2015 200/200 SRS EoE
Middlebury2014 15/15 FERNLHERZ Y5
ETH3D 27/20 Bz B B IRE S R
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EPE.2 18 5 Fl 3 & & & 22 48 5 0 % 4, XF
KITTI2015 a4 i EER 0 35 5% X3 (bg) AT 51X
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Table 2 Ablation experiment results in the Scene Flow dataset

Model EPE/px >3 px/% Params/M Time/s
RAFT-Stereo 0.56 2.85 12.0 0.37
RAFT-Stereo+CCV 0.50 2.61 12.6 0.38
RAFT-Stereo+MPM+CTAM 0.54 2.77 12. 4 0.38
RAFT-Stereo+CCV+MPM+CTAM ( A< 3C) 0. 47 2.54 12.8 0.38
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Table 3 Reducing the number of iterations for prediction

Number of Iterations

Method
1 2 4 8 16 32
RAFT-Stereo 2.16 1.21 0.82 0. 66 0.63 0.61
R+CCV 0.97 0.83 0.72 0.63 0.56 0.52
R+CCV+MPM+CTAM 0.71 0.67 0.61 0.54 0.51 0.49
Full model 0.68 0.65 0.59 0.53 0.49 0.47
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Table 4 Comparison of EPE parameters in the Scene Flow dataset
Method PSMNet CSPN LEAStereo GwceNet GC—Net RAFT-Stereo ACVNet AL
EPE/px 1.09 0.78 0.78 0.76 0.72 0. 56 0.48 0.47
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Table 5 Parameter comparison in the KITTI2012 and KITTI2015 datasets
KITTI2012 KITTI2015
Methods

2-noc  2-all  3-noc  3-all EPE-noc EPE-all D1-bg D1-fg D1-all

GC—Net 2.71 3.46 1.77 2.30 0.6 0.7 2.21 6.16 2.87
PSMNet 2.44 3.01 1.49 1.89 0.5 0.6 1.86 4.62 2.32
GWCNet 2.16 2.71 1.32 1.70 0.5 0.5 1.74 3.93 2. 11
HITNet 2.00 2.65 1.41 1.89 0.4 0.5 1.74 3.20 1.98
AcfNet 1.83 2.35 1.17 1.54 0.5 0.5 1.51 3.80 1.89
ACVNet 1.83 2.35 1.13 1.47 0.4 0.5 1.37 3.07 1.65
RAFT-Stereo 1.92 2.42 1.30 1.66 0.4 0.5 1.58 3.05 1.82
CCV-Stereo(A3L)  1.75 2.27 1.21 1.46 0.4 0.5 1.41 2.74 1.63

AT Al CCV -Stereo MJ¥Z AL HE 71, 7 ETH3D
Fl Middlebury2014 %548 45 [ oF47180, 450 W3R
6., HIF 6 PN, AR SCHRE S PR AR e IR SO HE X B 3
O (A7 ETH3D (KB MG RN,

% 6 7 Middlebury2014 #1 ETH3D #{#E5 L #1714
Table 6 Evaluated on Middlebury2014 and ETH3D datasets

Middlebury2014

Model ETH3D
Half Quater

SGM 25.2 10.7 12.9
PSMNet 15.8 9.8 10.2
GANet 13.5 8.5 6.5
DSMNet 13.8 8.1 6.2
CFNet 15.3 9.8 5.8
RAFT-Stereo 8.7 7.3 3.2
CCV=Stereo( A ) 7.5 6.4 3.4
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Fig. 4 Comparison of disparity maps of occluded areas in images
in the KITTI dataset
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Fig. 5 Comparison of disparity maps of weak texture areas in

images in the KITTI dataset
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