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Research on small target detection algorithm based on improved YOLOvVS
DAI Tao, LI Qingsong, DENG Pengyi

('School of Automobile and Transportation, Xihua University, Chengdu 610039, China)

Abstract. At present, there have been many research results on the detection of large and medium targets, and considerable fruits
have been achieved. However, small targets have poor detection results due to their few pixels, carrying less information, and easy
information loss during downsampling. An improved algorithm based on YOLOVS is proposed to address the issue of small object
detection. Firstly, a detection head is added to the algorithm to achieve finer grained object detection. Then, BiFormer dual layer
routing attention mechanism is added to increase the importance of small targets. To address the negative impact of IoU calculation
on small object detection, Wasserstein distance is used to measure the similarity of BBox instead of standard IoU calculation.
Experimental results have shown that compared with the original algorithm, mAP@ 0. 5 of the improved algorithm is increased by
0.045 2, verifying the effectiveness of the improved algorithm in improving the performance of small object detection.
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Fig. 1 Structure diagram of improved YOLOVS algorithm
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Fig. 3  The sensitivity analysis of IoU on tiny and normal scale
objects
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