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摘　 要:
 

马铃薯在国内的农业资源中占据着重要地位,拥有丰富多样的品种。 准确识别马铃薯品种对于推动马铃薯育种发展

至关重要。 因此,本研究基于深度学习网络提出了一种多品类马铃薯植株识别模型。 该模型采用了基于 Swin
 

Transformer 的
架构,并通过对注意力机制的巧妙改进,有效提升了模型的特征提取能力。 与此同时,通过减少模型参数量,该模型的准确率

得到了显著提升。 原始的 Swin
 

Transformer 在对 30 个马铃薯品种进行植株识别时的准确率为 95. 0%,而改进后的 Swin
 

Transformer 达到了 97. 1%,提升了 2. 1 个百分点。 研究结果明确显示,改进后的 Swin
 

Transformer 模型在对马铃薯植株进行

识别分类方面优于原始 Swin
 

Transformer 模型。 深度学习网络模型在马铃薯植株种类识别方面展现出可行性,为其在实际生

产中的推广应用提供了有力支持。
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Abstract:
 

Potatoes
 

play
 

a
 

vital
 

role
 

in
 

China ' s
 

agricultural
 

landscape,
 

boasting
 

a
 

diverse
 

array
 

of
 

varieties.
 

The
 

accurate
 

identification
 

of
 

these
 

varieties
 

is
 

crucial
 

for
 

advancing
 

potato
 

breeding.
 

This
 

study
 

proposes
 

a
 

multi - variety
 

potato
 

plant
 

identification
 

model
 

based
 

on
 

the
 

deep
 

learning
 

network.
 

The
 

model
 

leverages
 

the
 

architecture
 

of
 

the
 

Swin
 

Transformer,
 

enhancing
 

feature
 

extraction
 

through
 

clever
 

improvements
 

in
 

the
 

attention
 

mechanism.
 

Simultaneously,
 

a
 

reduction
 

in
 

the
 

number
 

of
 

model
 

parameters
 

results
 

in
 

a
 

significant
 

boost
 

in
 

accuracy.
 

The
 

original
 

Swin
 

Transformer
 

achieves
 

95. 0%
 

accuracy
 

in
 

identifying
 

30
 

potato
 

varieties.
 

In
 

contrast,
 

the
 

enhanced
 

Swin
 

Transformer
 

achieves
 

an
 

impressive
 

97. 1%,
 

marking
 

a
 

substantial
 

2. 1
 

percentage
 

point
 

improvement.
 

These
 

results
 

unequivocally
 

demonstrate
 

the
 

superiority
 

of
 

the
 

enhanced
 

Swin
 

Transformer
 

model
 

in
 

the
 

identification
 

and
 

classification
 

of
 

potato
 

plants
 

over
 

its
 

original
 

counterpart.
 

The
 

deep
 

learning
 

network
 

model
 

has
 

shown
 

feasibility
 

in
 

potato
 

plant
 

species
 

identification,
 

which
 

provides
 

strong
 

support
 

for
 

its
 

popularization
 

and
 

application
 

in
 

actual
 

production.
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0　 引　 言

马铃薯是全球重要的粮食作物之一[1] ,马铃薯

品种的识别对马铃薯的育种与推广有着重要的意

义。 目前,对于马铃薯的种类还主要依靠人工参与

的方式鉴别,使用人工参与的方法来识别大量相似

度极高的图像并实现分类则需要消耗极大的时间成

本和人力资源,且效率低下、带有较高的主观性、难

以适应时代发展的需要[2-3] 。 近年来,大量的研究

表明,利用深度学习技术可以高效地完成植物的种

类识别[4-5] 。 然而,在品种识别任务中,该方法仍然

面临较大的挑战。 这主要是因为植物在生长过程中

经历的形态变化以及不同发育情况导致同一物种的

不同品种之间存在微小但显著的差异,同时还存在

大量的种内变异。 在当前追求高效率和高信息化的

时代,国内外学者及专业研究机构等对以图像分析

及图像处理为基础的植物识别展开了广泛的研究,



并取得了一些成果[7] 。 2006 年,Hinton 等学者就提

出了深度学习的概念,同时提出了有效的方法用于

解决训练深度神经网络的难点,这一举动不但吸引

了国内外学者的广泛关注,也推动了深度学习的发

展[7] 。 2014 年,邓丽苗等学者[8] 针对玉米叶片单独

做了 48 个叶片特征的提取,通过支持向量机算法研

发了识别系统,达到了高达 96% 的识别率。 2015
年,王丽君等学者[9] 利用图像多特征融合方法,成
功开发了一套观叶植物种类识别系统。 通过对观叶

植物的形态等特征进行详尽分析,该系统提取了叶

片图像的颜色、形状和纹理等共计 26 个特征。 运用

支持向量机(SVM)算法进行分类识别,最终取得了

显著成果,识别率达到了 91. 41%。 2015 年,邹秋霞

等学者[10]提出了基于 Android 手机的植物叶片分类

系统,直接利用移动终端完成对叶片识别代表了新

的发展趋势,该系统对样本的识别取得了不错的结

果。 2018 年,陈文根等学者[11] 基于深度卷积网络

对 9 种小麦进行品种识别研究,采用
 

Softmax
 

分类

器进行品种分类,达到 97. 78%的平均识别准确率。
2017 年,丁秋等学者[12]采集了 15 个品种小麦籽粒在

388~1
 

009
 

nm 波段的近红外高光谱图像,通过主成

分分析优选特征波长,应用贝叶斯判别分析进行多元

分析,建立判别函数判别回代准确率为 99. 9%,交叉

验证的准确率为 98%,模型取得了不错的效果。 2020
年,李鸿强等学者[13] 采用高光谱分析技术结合模式

识别,对 8 种马铃薯微型薯种分别使用线性判别、BP
神经网络和支持向量机来搭建分类模型,最终建立了

分步骤、分层分类识别的分类模型,其平均正确识别

率为 89. 75%。 表明光谱分析可用于马铃薯微型薯种

分类检测。 2017 年,袁亮等学者[14] 在对番茄实时分

级研究中应用机器视觉技术进行建模,实现了自动

化,且模型精度达到
 

92%。 2022 年,孟志超等学者[15]

通过网络结构调整提出了基于 VGG 模型的油茶品种

分类模型 Enhanced
 

VGG16,其对油茶叶的品种分类

准确率达到 98. 44%,模型综合性能得到优化。 2021
年,韩斌等学者[16] 在深度学习方法中引入了传统特

征,提出了一种基于多特征融合的叶片图像识别方

法。 该方法通过提取叶片的 LBP 特征和 Gabor 特征,
将两者相加融合后输入卷积神经网络进行叶片分类,
取得了平均正确识别率为 96. 37%的显著成果。

国内外学者在作物品种分类[17-18] 领域做了深

入研究,并取得了不错的成果,但将该技术应用到马

铃薯品种分类鉴别中的鲜少见到。 本研究将对不同

品种马铃薯植株照片进行探索和研究,其目的是研

究出一种高效的马铃薯品种分类模型来满足当前生

产应用的需求,为马铃薯品种的快速鉴别提供理论

支撑和技术支持。

1　 材料与方法

1. 1　 材料

实验采用的马铃薯品种共 30 个,来源于甘肃省

农业科学院马铃薯研究所在榆中试验站的推广品种

(系),主要品种有陇薯 19 号、陇薯 20 号、陇薯 23
号、陇薯 25 号、陇薯 26 号、陇薯 12 号等。 图像数据

于 2023 年 7 月底采集,在自然光照条件下使用

Nikon
 

COOLPIX
 

B700 全天候拍摄,拍摄过程中主要

以晴天为主,有 3 ~ 4 天为阴雨天,这使得数据有更

好的健壮性。 本试验所构建的马铃薯植株图像数据

集中,对 30 个品种共采集马铃薯植株图像样本

27
 

300 张,平均每个品种约 900 张。 因多数马铃薯

长势是匍匐于地表且长势较密集,在拍摄图像时,采
用了多个角度,包括顶部、侧面、整体和部分等视角。

 

图像的命名方式为“马铃薯品种编号_植株编号_相
机视图编号. jpg”。 例如,

 

“1_1_1. jpg”表示第一个

品种第一株的第一视角图像。 图 1(a) ~ ( f)展示了

马铃薯植株的 6 种视角图,其中(a) ~ (d
 

)组采用了

蓝色背景,(e) ~ (f)组模拟了自然田间拍摄。

(a)视角1

(b)视角2

(c)视角3

(d)视角4

(e)视角5

(f)视角6

图 1　 马铃薯植株数据集部分图

Fig.
 

1　 Partial
 

plot
 

of
 

the
 

potato
 

plant
 

dataset
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1. 2　 Swin
 

Transformer
 

简介

Swin
 

Transformer 是一种基于 Vision
 

Transformer
的计算机视觉模型,由微软亚洲研究院( MSRA)提

出。 Swin
 

Transformer 通过将局部自注意力与分层

窗口移位相结合,实现了对图像的全局和局部表示

的学习[19-20] 。 Swin
 

Transformer 在多个计算机视觉

任务性能上取得了显著提升,如图像分类、目标检测

和语义分割等。 其模型网络结构如图 2 所示。
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图 2　 Swin
 

Transformer
 

网络结构

Fig.
 

2　 Swin
 

Transformer
 

network
 

structure

　 　 Swin
 

Transformer 模型的迭代过程主要包括以

下几个步骤:首先,在 Patch
 

Partition 层通过一个二

维卷积将输入的图片切成多个 patch,然后进行嵌入

向量,接着输入到 Linear
 

Embedding 层做线性变换,
稍后就是通过 4 个

 

Stage
 

构建不同大小的特征图。
 

Stage1
 

中先通过一个 Linear
 

Embedding 层外,剩下 3
个 Stage

 

都是先通过一个 Patch
 

Merging 层进行下采

样,继而都是重复堆叠 Swin
 

Transformer
 

Block。 其

输出的特征图如图 3 所示。 由图 2 可知,每个 Block
通过窗口多头注意力( W - MSA) 机制来计算复杂

度,同时,通过位移窗口的多头自注意力机制( SW-

MSA)来实现窗口之间的信息交互,并保证高效的计

算效率。 研究推得的公式具体如下:

zl = MLP(LN( ẑl) +ẑl) (1)

ẑl = W - MSA(LN( zl -1) +zl -1) (2)
zl +1 = W - MSA(LN( zl -1) +zl -1) (3)

ẑl +1 = SW - MSA(LN( zl) +zl) (4)

　 　 其中, zl、ẑl、zl +1、ẑl +1 表示输出。
　 　 基于此,再续接上一个 LayerNorm 层、全局池化

层以及全连接层得到最终输出。

Layer1FeatureMaps

图 3　 输出特征图

Fig.
 

3　 Output
 

feature
 

map
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1. 3　 模型的改进

Swin
 

Transformer[19-20]引入了 Shifted
 

Windows 机

制,将全局自注意力机制改进为多尺度的局部自注意

力,使用多头自注意力机制,通过引入多个独立的注

意力头,使得模型能够在不同的子空间中学习不同类

型的关系。 每个注意力头都对输入序列进行不同的

投影和关注,以捕捉多样性的信息[21-22] 。 在计算注

意力时,输入序列首先通过每个注意力头的线性投

影,并将这些头的输出拼接在一起。 随后,通过线性

转换将多头注意力的输出融合为最终的输出,同时

Swin
 

Transformer 引入了相对位置编码,以捕捉不同位

置之间的相对关系。 总体而言,Swin
 

Transformer 的注

意力机制通过 Shifted
 

Windows 的局部自注意力机制实

现了对图像中不同位置关系的建模,提高了计算效率,
同时保持对图像全局信息的充分感知。 但相对位置编

码的引入,模型的计算参数量随即增加,加大了模型的

计算复杂度,同时使得模型数据过拟合,达不到泛化效

果。 因此,本试验做了以下几个调整:取消了相对位置

编码机制;使用了线性层
 

self. linear_1
 

计算最终输出;
Dropout 应用在输出上,通过

 

self. attn_drop
 

实现。

2　 试验结果与分析

试验算法平台为曙光云计算服务平台,模型训

练与测试的软件环境为 Linux
 

64 位系统, 选择

Python3. 8 编程语言,加速卡为国产 dtk,深度学习框

架为 Pytorch2. 0。
2. 1　 模型评价标准

仅使用识别准确率作为评价指标存在较大缺

陷,往往无法全面评估模型在各个时期的详细分类

效果等有价值的信息。 为了更全面地评估模型性

能,本试验采用了准确率、精确度、召回率和特异度

等 4 个指标[23] 。 其中,准确率(Accuracy)表示分类

正确的马铃薯品种占所有品种的比例; 精确度

(Precision)表示正确分类的马铃薯种类数量;召回

率(Recall)表示某一品种中分类正确的数量比例;
特异度( Specificity)指真正不属于某一种类的图像

中,被判断为非此类的比例。 计算公式如下:

Accuracy = TP + TN
TP + TN + FP + FN

× 100% (5)

Precision = TP
TP + FP

× 100% (6)

Recall = TP
TP + FN

× 100% (7)

Specificity = TN
TN + FP

× 100% (8)

2. 2　 训练结果

2. 2. 1　 准确率与损失分析

模型准确率与训练损失结果如图 4 所示。 需要

提及的是,loss 与 acc 是改进后,loss00 与 acc00 是原

始模型。 从图 4 中可以看出,原模型的初始损失约

为 3. 00 左右,前 30 次迭代下降快速,30 ~ 90 次下降

缓慢,90 次以后趋于稳定约为 0. 15;改进后初始损

失约为 2. 7,前 20 次迭代快速下降,20 ~ 60 次缓慢

下降,60 次以后基本趋于平稳,稳定值约 0. 11 左

右。 由此可以看出,改进后的模型损失下降速度快,
且值较为稳定。 就其准确率来看,原模型在 40 次迭

代后趋于稳定且最终最高准确率为 95. 0%;改进后

模型在 30 次迭代后就增长缓慢,最终最高准确率为

97. 1%。 通过与原模型对比,改进后模型收敛速度

明显变快,且准确率高于原模型。

1 6 11162126 3136 4146 515661 6671 7681869196101106111116121126131136141146
迭代次数(epochs)
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图 4　 网络训练准确率与损失

Fig.
 

4　 Network
 

training
 

accuracy
 

and
 

loss

2. 2. 2　 混淆矩阵分析

混淆矩阵作为一种基本的性能评价工具,可以将

分类模型的预测结果和真实类别之间的关联用矩阵

表示出来。 本试验用 5
 

443 张马铃薯植株图片对改
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进后的模型进行了测试,其分类结果混淆矩阵如图 5
所示,横轴表示马铃薯品种的正确类别,纵轴表示模

型预测值。 矩阵对角线表示其正确分类值,其余为混

淆分类。 由图 5 中可以看出,模型总体分类效果比较

理想,L14140-5 和 1520-1 分类效果最好,所有测试

图片均被正确分类;L12116 - 19、LS12、LS17、LS25、
Ly1916-3、Ly1624-2、Ly1722-1、Ly1727-3 和 Ly1733-
16 分类效果较差,其中 Ly1722-1 分类准确率最低,
共 183 张照片中有 13 张未正确分类;其次就是

Ly1727-3 与 Ly1733-16,
 

Ly1727-3 实际 203 张图片,
只有 192 张正确分类,Ly1733-16 实际 183 张图片,正
确分类 172 张。 通过混淆矩阵可以看出,Ly1722-1
易被误认为 Ly1615-3,Ly1619-3 易认成 L12116-19,
Ly1733-16 易被认成 Ly1628-1。 容易误分的原因可

能在于皆同属于一个大类,且又可能是同一亲本,导
致其植株纹理极为相似,给网络模型的分类识别增加

了一定的难度。 总体来讲,改进后的模型总体分类效

果较好,可以通过植株对马铃薯品种进行准确分类。
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图 5　 混淆矩阵

Fig.
 

5　 Confusion
 

matrix

3　 精确度、召回率和特异度

改进后模型与原模型的精确度、召回率和特异

度如图 6 所示。 需要提及的是,Precision、Recall 与

Specificity 是 改 进 后, Precision
 

0、 Recall
 

0 与

Specificity
 

0 是原始模型。 精确度率是分类正确马

铃薯种类占全种类比例,由图 6(a)可知,改进后模

型精确率较高,各品种已均超 90%,其中 L11120-8、
L11133-2H、LS-26、Ly1517-8 的精确度达 100%,平
均精确率为 97. 2%;改进前模型型精确率也比较

高,均在 85%之上,平均精确率达 96. 1%。 相比之

下,改进后模型的精确率基本上都比原先高,各个分

类之间精确率差距较小,相对比较稳定。 召回率

(Recall)是对某一品种中分类正确数量的比例。 由

图 6(b)中可以看出改进后各品种之间的召回率差

距较小,进一步说明了改进后模型识别的稳定性。
从特异度上看,改进前后均高于 99. 5%,进一步说

明此模型适用于马铃薯品种的分类。
　 　 为了验证改进后模型的优越性,与其他主流模

型进行了对比试验,其结果见表 1。 所有模型在同

一环境下进行训练,采用相同的参数。 由表 1 可以

看出,改进后模型的平均准确率与最高准确率均高

于原始模型、GoogLeNet 和 ResNet34,说明了改进后

模型的优越性,改进是比较成功的。
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图 6　 精准率,召回率与特异度

Fig.
 

6　 Accuracy,
 

recall,
 

and
 

specificity

表 1　 不同模型识别结果

Table
 

1　 Identification
 

results
 

of
 

different
 

models

模型 迭代次数 平均准确率 最高准确率

Swin
 

Transformer 150 0. 857
 

8 0. 953

GoogLeNet 150 0. 862
 

3 0. 939

ResNet34 150 0. 894
 

4 0. 960

本文模型 150 0. 894
 

9 0. 973

4　 讨论

本试验以深度学习网络为基础,改进了 Swin
 

Transformer 模型,旨在提高对多品类马铃薯植株的

准确识别。 通过对比原始模型和改进后模型损失下

降速度和准确率方面的表现,结果显示改进后的模

型损失下降速度更快,准确率更高。 混淆矩阵分析
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展示了改进后模型对各个马铃薯品种的分类效果,
总体表现较为理想。 在精确度、召回率和特异度方

面的对比分析中,改进后模型呈现出更高的精确度,
各品种精确率均超过 90%,召回率差距较小,显示

出模型的分类稳定性。 在特异度方面,改进后模型

与原始模型均高于 99. 5%,验证了模型在马铃薯品

种分类上的适用性。 最后,通过与其他主流模型进

行对比试验,结果显示改进后模型的平均准确率和

最高 准 确 率 均 优 于 原 始 模 型、 GoogLeNet 和

ResNet34,证明了改进的有效性。

5　 结束语

改进后的 Swin
 

Transformer 模型在马铃薯植株

多品类识别任务中表现出色。 相对于原始模型,改
进后模型在损失下降速度、准确率、精确度、召回率

等方面均取得显著提升。 混淆矩阵的分析结果显

示,改进后模型能够更准确地对各个品种进行分类,
证明了其在实际应用中的可行性和优越性。
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