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An image inpainting model combining total generalized
variation and deep image prior

DU Zhiyan, WANG Haiyan

(College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

Abstract; Recovering images from incomplete measurements can be challenging, especially when the images contain important
details and features. In reality, there usually are degraded images rather than real ones. To solve these problems, this paper
introduces a new variational model, which combines two kinds of priors: Total Generalized Variational ( TGV ) and Depth Image
Prior (DIP). TGV is a regularization method that enables the reduction of artifacts while maintaining sharp edges. DIP proposes
using a deep network as a regulator for inverse problems, allowing learning a priori information required for image recovery from
convolutional neural networks, eliminating the need for a large number of image pairs. The model combines the advantages
of DIP and TGV, that is, it does not require a large number of image pairs during the training process, and can effectively
recover the edges and details of the image. The Alternating Direction Method of Multipliers (ADMM) is used to solve the model.
The proposed method exceeds various state—of—the—art methods in terms of quantitative and qualitative results for image inpainting
tasks.
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