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Abstract . Intrusion Detection System(IDS) play a vital role in ensuring network security, but traditional approaches often struggle
with detecting sophisticated and evolving threats, resulting in low accuracy and high response latency. To enhance the practicality
and real-time performance of IDS, this paper proposes a dual-stage detection framework based on XGBoost. The system firstly
performs coarse—grained filtering through subsegment classification, followed by fine —grained analysis at the data point level to
improve detection precision. Experiments conducted on the ROSPaCe dataset demonstrate that the proposed model achieves an
accuracy of 95. 99% under the Equal Error Rate ( EER) threshold of 0. 7, while significantly reducing false positive rates and
maintaining acceptable detection latency. Furthermore, zero—day attack simulations reveal that the diversity of training data is critical
to the generalization capability of the model. The study highlights the non-linear trade—offs between accuracy, detection latency,
and false alarm control, suggesting that all three metrics should be jointly optimized to improve the deployment effectiveness of IDS
in scenarios such as IoT and industrial control systems.
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Fig. 1 Definition of segment, subsegment and detection latency
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Table 2  Data distribution statistics for each label type in the

ROSPaCe dataset
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Table 4 Analysis of classification accuracy, detection latency, and false positive rate under different training set configurations
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Table 5 Comparison of data point classification performance on the ROSPaCe dataset
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