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A lightweight graph attention network model for recommendation
LU Shengyao

(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract: Graph neural networks have shown powerful capabilities in recommendation systems. However, many models face
questions such as redundant modules, low efficiency of neighborhood aggregation, etc. To address these problems, a lightweight
graph attention network model for recommendation LGAT is proposed. Unlike graph attention networks, LGAT removes the feature
transformation and nonlinear activation operations, and only retains the most core component of neighborhood weighted aggregation.
This simplifies the model structure and improves the model performance. This paper also proposes an adaptive neighborhood
sampling strategy, which can dynamically select the most suitable neighbor nodes according to the graph structure, thereby
improving the quality of neighborhood aggregation and enhancing the computational efficiency. Experiments are conducted on three
public datasets, and it is indicated that LGAT has more advantages in recommendation accuracy, which well demonstrates the
effectiveness of lightweighting graph attention network for recommendation.
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Table 1 Dataset statistics

Dataset User [tem Interaction Density
MovieLens 943 1 682 100 000 0.063 0
Amazon 1 000 1 000 65 170 0.065 2
Yelp 1 286 2614 30 838 0.009 2
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Table 2 Performance comparison of rating prediction

MovieLens—100k Amazon Yelp
Model
RMSE MAE RMSE MAE RMSE MAE
STAR-GCN 0.910 1 0.716 2 0.8924  0.6587 0.3874 0.1106
NGCF 0.9089  0.7126 0.8863  0.649 4 0.3826  0.1052
LightGCN 0.9027 0.7010 0.8793  0.640 4 0.3814  0.1018
MCCF 0.9074  0.7053 0.8802 0.6441 0.3819  0.104 3
LGAT-f 0.9125  0.709 0 0.8967  0.6502 0.3846  0.1039
LGAT-n 0.9043  0.705 1 0.8814 0.6426 0.3784  0.101 8
LGAT-in 0.9113  0.706 8 0.8917 0.6475 0.3814 0.1026
LGAT 0.9017 0.697 4 0.8735 0.6402 0.3726  0.100 5
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