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Application of multi feature fusion network in street scene
XU Hongkui'?, GUO Wentao', LI Zhenye', ZHAO Jingzheng', GUO Xubin'

(1 School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China;
2 Shandong Key Laboratory of Intelligent Buildings Technology, Jinan 250101, China)

Abstract; The dual —branch network structure has demonstrated its efficiency and accuracy in real —time semantic segmentation
tasks. However, the fusion of low—level details and high—level semantic information can lead to the obscuring of detailed features by
surrounding contextual information, resulting in edge blurring. To address this issue, a tri—branch network structure is proposed,
which consists of three branches for extracting spatial information, contextual information, and boundary information. In the
semantic extraction network, the traditional CNN convolution method has been abandoned in favor of a novel non - cross—row
convolution approach, and semantic information is deeply extracted through a depth aggregation module. In the final fusion stage,
boundary information is utilized to guide the fusion of spatial and high —level semantic information, thereby enhancing the
performance of the semantic segmentation network. The designed network structure is tested on a urban landscape dataset, achieving
an average intersection over union of 78. 8% and an inference speed of 80.2 FPS, striking a balance between speed and accuracy.
Key words: dual-branch network; information fusion; three branch network; SPD—Conv; deep aggregation
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Table 1 Network structure diagram

7N (s i 1 R
Convl SPD-Conv H/2 x W/2
3x 3,32
Conv2 SPD-Conv H/4 x W/4
[3>< 3 32] <
3x3 32
Conv3 SPD-Conv H/8 x W/8
[3>< 3 64] “
3x 3 64
Conv4 3x 3 64 SPD-Conv 3x 3 64 H/8 x W/8
[3>< 3 64] X2 3x 3 128 [3>< 3 64] X2 H/16 x W/16
[3>< 3 128] 2 H/8 x W/8
Bilateral fusion Bilateral fusion
Conv5 3x 3 64 SPD-Conv 3x 3 64 H/8 x W/8
[3>< 3 64] X 3x 3 256 [3>< 3 64] X2 H/32 x W/32
[3>< 3 256] X2 H/8 X W/8
Bilateral fusion Bilateral fusion
Conv6 glxl 64 SPD-Conv ALX 1T 64 ) H/8 x W/8
Alx 1 64, x1 élxl 256H ~3x 3 64, x1 H/64 x W/64
1x 1 128% ~3x3 256, x1 glxl 128 H/8 x W/8
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Fig. 3 Deep aggregation diagram
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Table 3 Comparison of experimental results

Model FPS mloU/% Params/M

SegNet!?] 16.7 57.0 29.50
ICNet[ %! 30.0 69.5 26. 50
DFANet! %) 100. 0 71.3 7.80
BiSeNet! ' 74.8 65.5 49. 00
SFNet[1#] 30. 4 78.9 12.87

A3 80.2 78.8 9.03
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RS IE =03 S R 2 A TR B SR A AR B
CNN F s A 250, A SCilb AT TS Al s, HoAk
LA R IR 4,
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Table 4 Comparison of ablation experiments

Group FPS mloU/ % Params/M

WAT 3K 87. 4 65.5 5.73

=X 84.2 70.2 7.70
=43 +SPD-Conv+DAM  80.2 78.8 9.03

3.7 HERHRL

PP AALSE RN IE 5 i, 383 o3 H EHR
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