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摘　 要:
 

针对轴承退化信息提取不全面导致轴承剩余寿命预测不精准的问题,本文提出提取原始振动信号多维度特征建立特

征集,使用融合多头注意力机制的时间卷积网络(MA-TCN)进行轴承的寿命预测。 研究中,提取常用时域特征 15 维、频域特

征 10 维作为混合特征集,并用作输入对轴承进行剩余寿命预测,采用 MA-TCN 网络,实现轴承的剩余寿命预测。 PHM2012
数据集的轴承预测结果可决系数均达到 91%以上,证明该方法能够对轴承的剩余寿命进行精确预测。
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Abstract:
 

Aiming
 

at
 

the
 

problem
 

of
 

imprecise
 

bearing
 

life
 

prediction
 

due
 

to
 

incomplete
 

extraction
 

of
 

bearing
 

degradation
 

information,
 

this
 

paper
 

proposes
 

extracting
 

multidimensional
 

features
 

of
 

the
 

original
 

vibration
 

signals
 

to
 

establish
 

a
 

feature
 

set,
 

and
 

use
 

a
 

Multi-head
 

Attention
 

integrated
 

Temporal
 

Convolutional
 

Network
 

(MA-TCN)
  

to
 

carry
 

out
 

the
 

life
 

prediction
 

of
 

bearings.
 

In
 

the
 

research,
 

15
 

dimensions
 

of
 

commonly
 

used
 

time-domain
 

features
 

and
 

10
 

dimensions
 

of
 

frequency-domain
 

features
 

are
 

extracted
 

as
 

a
 

hybrid
 

feature
 

set,
 

which
 

are
 

used
 

as
 

inputs
 

for
 

life
 

prediction
 

of
 

bearings
 

using
 

MA - TCN
 

network.
 

The
 

decidability
 

coefficients
 

of
 

the
 

bearing
 

prediction
 

results
 

of
 

the
 

PHM2012
 

dataset
 

all
 

reach
 

more
 

than
 

91%,
 

which
 

proves
 

that
 

the
 

method
 

can
 

accurately
 

carry
 

out
 

the
 

life
 

prediction
 

of
 

bearings.
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0　 引　 言

滚动轴承作为轨道交通车辆的关键部件之一,
被广泛应用于车辆的行走部、电机等设备中,其运行

状态的好坏将直接影响轨道交通的安全运行。 运行

轴承的意外故障会增加机器的停机时间和维护成

本,从而造成重大的经济损失[1] 。 因此,预测滚动

轴承的剩余使用寿命对整个设备的健康评估具有重

要意义。
针对滚动轴承状态分析方法主要有振动信号分

析法[2] 、温度分析法[3] 以及油液分析法[4] 等,而轴

承在受到损伤后,会发出一种高频脉冲激励信号、即
振动信号,振动信号特性稳定且易于采集,这使得振

动分析成为一种合适且具有发展前景的滚动轴承状

态监测技术[5] 。 轴承的振动信号受轨道激励和环

境噪声的影响,表现为复杂的非线性和非平稳信号,
通过传感器收集其振动加速度数据并进行后期分

析,以获得相应的系统故障信息[6] 。 从振动信号中

提取的特征包含了机器部件的健康状态信息,在轴

承预测中起着至关重要的作用。 但使用传感器采集

轴承原始振动信号时,由于该信号内存在许多噪声

信息,提取能够判别轴承运行状态的信息是轴承寿

命预测的关键,因此不同领域(即时间、频率和时频

域[7] )的信号处理技术已应用于采集的振动数据研

究,用来提取各种原始特征[8] 。
在现有的一些研究中,Sutrisno 等学者[9]提取轴



承的时频域特征并进行 PCA 降维后,通过使用最小

二乘支持向量机( LSSVM) 回归方法实现了剩余使

用寿命(RUL) 预测。 Guo 等学者[10] 提取了 6 个相

关相似特征与 8 个经典时频特征,并根据得分指标

选择了最优的 10 种特征,随后在寿命预测阶段用递

归神经网络(RNN)将其映射到 RUL 标签中。 Wang
等学者[11]在去噪经验模态函数中提取 6 个时频域

特征来表征轴承的退化。 特征数量少,包含信息不

够全面。
对于轴承的 RUL,目前已经有许多神经网络运

用到该领域研究中,包括卷积神经网络[12] ( CNNs)
和递归神经网络,如长短期记忆[13](LSTM)、门递归

单元(GRU)。 Ren 等学者[14] 提出一种基于深度卷

积神经网络 ( DCNN) 的轴承 RUL 预测新方法。
Yang 等学者[15]提出了一种基于不确定性量化的长

短期记忆(LSTM)轴承 RUL 预测新方法,其中该方

法可以自适应地提取特征。 Eknath 等学者[16] 提出

了一种新的预测方法。 该方法结合了深度卷积神经

网络(DCNN)和门控循环单元( GRU),建立了一个

双向循环层,可以专注于过去的数据,同时嵌入未来

的信息,以增强 GRU 模型吸收数据的潜力。 Cao 等

学者[17]提出了一种具有残差自注意机制的时间卷

积网络(TCN),TCN 具有预测精度高、运算速度快

的特点,适用于处理时序问题,解决了 RNN 及其变

体网络无法并行处理的问题,实现了端到端的 RUL
预测。 然而,上述方法通常强调振动信息的时间相

关性,却忽略了轴承对外部干扰的敏感性增加以及

随着轴承的逐渐退化振动信号不稳定性的影响。 振

动信号变化幅度和严重程度的复杂性导致网络在学

习轴承退化阶段的特性时存在较大误差。
针对以上论述,本文着重解决目前对于轴承退

化信息提取不全面导致的轴承 RUL 预测不精准的

问题。 在原始振动信号提取时域、频域特征共 25 维

特征,就能够较为充分地挖掘原始振动信号所包含

的轴承退化信息。

1　 TCN 原理

TCN[18]是一种基于改进的 1-D-CNN 的新时间

序列模型,其核心思想是通过因果卷积来处理时间

数据,并引入扩展卷积来解决时间序列模型对长距

离依赖的问题。 与传统的 CNN 相比,TCN 有以下改

进:
(1)卷积层之间存在因果关系,能够根据历史

信息预测未来信息,有效减少信息损失。

(2)利用残差连接层和扩展卷积来加深网络层

数,使网络具有长期记忆能力,在处理时间序列方面

更有优势。 本文研发 TCN 的因果扩张卷积结构如

图 1 所示。

Y1 Y1 Y1 Y1

X1 X1 X1 X1

d=4

d=2

d=1

RUL

Output

Hidden

Hidden

Input

图 1　 TCN 结构图

Fig.
 

1　 TCN
 

structure

　 　 在 TCN 中,输入和输出之间的映射如下所示:
Y =FT(X) (1)

　 　 其中, FT(·) 表示 TCN 模型; X = { x0, x1,
x2,…,xt -1,xt} 表示 t 时刻的输入混合域特征序列;
Y = {y0,y1,…,yt -1,yt} 表示对应的输出序列。

在 TCN 中,随着因果展开卷积的引入,网络层

数会加深,但其性能反而会逐渐下降,这可能是由以

下原因引起的:首先,由于网络结构更深,训练时间

成本更高,网络在反向传播过程中将更难收敛。 其

次,网络结构越深,常数映射就越难实现,模型优化

就越难。 为了解决上述问题,在 TCN 中引入了剩余

连接模块。 与通过拟合线性叠加网络层形成的常数

映射相比,残差映射更容易优化,并且可以使网络更

快、更有效地收敛。 剩余连接模块的结构,其定义如

下:
xn+1 = φ(xn + F(xn,ζn)) (2)

　 　 其中, xn 表示第 n 级的输入序列;xn+1 表示残差

块的输出; F(xn,ζn) 表示残差映射,通常由 2 ~ 3 个

因果展开卷积运算 ζn 组成; φ(·) 表示激活函数。

2　 多头注意力机制原理

对于轴承振动信号中包含的退化信息在其使用

寿命内发生变化,并且这种变化通常随着退化的增

加而愈加凸显。 注意力模块的目的是促使网络研究

与退化过程密切相关的时序数据中的隐藏知识,并
抑制特征学习过程中的冗余信息。 反映在结构的内

部计算中,通过为每个传入的退化数据分配不同的

权重来构建注意力矩阵,从而实现矩阵重建。
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通常, 自注意力机制包括查询矩阵 Q、关键字

矩阵 K 和数值矩阵 V。 自注意力的定义如下:

Attention(Q,K,V) = Softmax
QKT

　 dk
( ) V (3)

　 　 其中, Q、K、V 表示线性映射的形式,定义为

Q =Wqei,K =Wkei 和 V =Wvei;
 

dk 表示要投影的尺寸。
多头注意力[19]通过式(3)的多重自注意力操作

将输入特征投射到不同的子空间,获取多个子空间

的注意力向量,然后将这些注意力向量集合在一起。
通过多头注意力模型,能够从多个角度探讨不同嵌

入方式间的相关性,以提高模型的性能。 多头注意

力的具体定义如下所示。
   

Multihead(Q,K,V) = Concat(head1,…,headh) (4)
　 　 headi = Attention(QWQ

i ,
 

KWK
i ,

 

VWV
i ) (5)

　 　 多头注意力的输出级联了单层前馈神经网络
 

(FFNN),通过残差连接,将注意力权重 ai 输入到神

经网络中,得到最终输出 hattention, 定义如下:
hattention = Sigmoid(Wffnnai +bffnn +ai) (6)

3　 基于 MA-TCN 的轴承寿命预测方法

3. 1　 方法流程

滚动轴承寿命预测的具体流程如图 2 所示。

寿命预测结果

MA-TCN

训练样本 测试样本

时域特征 频域特征

轴承振动信号

特
征
提
取

图 2　 滚动轴承寿命预测流程图

Fig.
 

2　 Flow
 

chart
 

of
 

rolling
 

bearing
 

life
 

prediction

3. 2　 PHM2012 数据集

实验数据来自 2012 年 PHM 会议上发布的全寿

命数据集,数据是在 PRONOTIA 实验中收集的。
PRONOTIA 实验台如图 3 所示。 文献[20] 中给出

了具体描述,主要由旋转模块、加载模块和测量模块

组成。
　 　 收集 3 种不同负载的数据集。 第一种是电机转

速为 1
 

800
 

rpm,负载为 4
 

000
 

N;其他 2 种工况下的

电机转速和负载分 别 1
 

625
 

rmp 和 4
 

200
 

N、

1
 

500
 

rmp 和 5
 

000
 

N。 实验中没有添加人为故障,所
有故障都是轴承的自然降解过程,与实际工业场景一

致。 其采样频率为 25. 6
 

KHz,采样时间为 0. 1
 

s,每隔

10
 

s 采集一次。 在本文中,选择了在工况一下数据集

中的 4 组轴承来证明所提出的方法的有效性。

电机 速度传感器 减速机 扭矩计 连轴器 热电偶

数据采集卡 压力调节器 气缸压力 力传感器 测试轴承 加速度计

图 3　 PRONOTIA 实验台

Fig.
 

3　 PRONOTIA
 

experiment
 

table

3. 3　 特征提取

对原始振动信号提取 15 维时域特征,分别为:
最大值、最小值、平均值、峰-峰值、绝对均值、标准

差、方差、RMS、峰度、峰值、方根幅值、波形因子、峭
度因子、脉冲因子和裕度因子;对原始振动信号与重

构信号提取 10 维频域特征,分别为:频谱幅值样本

均值、平均频率、频率均方根值、频率方差、表征主频

带位置、频率能量集中度、频谱能量集中度、频率偏

度、频率峭度和标准化频谱均值。
3. 4　 时间卷积网络参数设置

为了能精度较高的进行寿命预测,需要设计时

间卷积网络( TCN) 结构。 通过控制变量法对 TCN
进行实验,最终来确定网络的结构以及参数。 实验

分组情况见表 1。
表 1　 实验分组情况

Table
 

1　 Experimental
 

groupings

组号 卷积核膨胀率 激活函数 卷积核

1 (1,2,4,8) LeakyReLU 3×3

2 (1,2,4,8) LeakyReLU 5×5

3 (1,2,4,8) ReLU 3×3

4 (1,2,4,8) ReLU 5×5

　 　 通过数据集对表 1 设计的各组网络进行逐一训

练、测试对比,最终确定了网络结构。 确定激活函数

为 LeakyReLU,卷积层的卷积核大小为 3×3。
3. 5　 寿命预测结果评估指标及参数确定

为了评估模型的性能,选择了 5 个性能指标进

行评估,即均方误差( MSE),均方根差( RMSE),平
均绝对误差(MAE), 可决系数(R2), 以及性能得分

(Score)。 定义公式如下[21] :
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MSE = 1
n ∑

n

i = 1
( ŷi -yi) 2 (7)

RMSE =
　

1
n ∑

n

i = 1
( ŷi -yi) 2 (8)

MAE = 1
n ∑

n

i = 1
| ŷi -yi | (9)

R2 = 1 -
∑

n

i = 1
( ŷi -yi) 2

∑
n

i = 1
(y- i -yi) 2

(10)

Score = 1 -
　 MSE

∑
n

i = 1
(y-i -yi)2 / n

- MAE

∑
n

i = 1
yi / n

(11)

　 　 其中, yi 表示真实值; ŷi 表示预测值; y- i 表示真

实值的平均数。
在确定了时间卷积网络的结构后,加入多头注

意力机制,对其头数的设置做了以下实验,得到结果

见表 2。
表 2　 多头注意力的数量

Table
 

2　 Number
 

of
 

multi-head
 

attention

方案 多头注意力的数量

MA 1 2 4 8 16 32

　 　 为了进行全面的交叉验证,从 4 个轴承中选择

3 个,依次训练寿命预测模型,然后使用另一个轴承

来测试模型。
通过实验探究不同多头注意力数量对轴承寿命

预测结果的影响, 以测试集 4 个轴承的 MSE,
RMSE,MAE, R2 以及 Score 作为评价指标,其中前 3
个越接近 0 效果越好,后 2 个越接近 1 效果越好,取
5 次实验平均值。 实验结果分别如图 4、图 5 所示。
　 　 由图 4、图 5 可以看出,当多头注意力的数量为

8 时,其 MSE、RMSE、MAE 指标最低, R2 以及 Score
指标最高。 故选择超参数多头注意力的数目为 16。

MSE
RMSE
MAE

0.12

0.10

0.08

0.06

0.04

0.02

0
1 2 4 8 16 32

多头注意力的头数

M
SE

&
R
M
SE

&
M
A
E

图 4　 MSE、RMSE、MAE 指标

Fig.
 

4　 MSE,
 

RMSE
 

and
 

MAE
 

metrics

R2

Score

0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
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0.50
0.45

1 2 4 8 16 32
多头注意力的头数

R2
&
Sc
or
e

图 5　 R2、Score 指标

Fig.
 

5　 R2,
 

Score
 

metrics

3. 6　 预测结果

实验预测结果见表 3。 根据预测结果可以看

出,Bearing1-1 与 Bearing1-3 的效果最好,原因可能

是 Bearing1-1 与 Bearing1-3 的数据模式最为相似,
而 Bearing1 - 4 与 Bearing1 - 7 的数据模式可能与

Bearing1-1 与 Bearing1-3 存在些许差异,但总体效

果较好,并且可决系数均已达到 0. 91 及以上,说明

拟合效果较好。
表 3　 实验结果

Table
 

3　 Results
 

of
 

experiments

轴承 MSE RMSE MAE R2 Score

Bearing1_1 0. 000
 

3 0. 018
 

5 0. 014
 

2 0. 996
 

0 0. 908
 

8

Bearing1_3 0. 001
 

3 0. 036
 

8 0. 026
 

2 0. 985
 

2 0. 873
 

9

Bearing1_4 0. 008
 

7 0. 093
 

1 0. 076
 

3 0. 919
 

5 0. 616
 

2

Bearing1_7 0. 002
 

8 0. 053
 

5 0. 042
 

4 0. 966
 

7 0. 738
 

5

　 　 为了更好地对比出本文方法,设置了消融实验

以及与其他方法的对比试验,以 Bearing1 - 7 为例,
其结果如图 6 所示。

1.0

0.8

0.6

0.4

0.2

0
500 1000 1500 2000

R
U
L/
s

原始预测
实际值

Bearing1_7,MSE:0.00286

Runningtime/10s

图 6　 Bearing1-1
 

寿命预测结果图

Fig.
 

6　 Bearing1-1
 

RUL
 

result
 

chart

　 　 通过不同方法对比如图 7 所示,对比结果见表

4。 可以发现 TCN 对比 LSTM、CNN、GRU 具有更高

的精度,增加了多头注意力机制后,其 MSE、RMSE、
MAE 均有下降,且 R2 与性能评分 Score 分数分别提
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升了 0. 04 和 0. 08,有更高的预测精度。
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图 7　 寿命预测对比图

Fig.
 

7　 Comparison
 

of
 

RUL
表 4　 实验结果对比

Table
 

4　 Comparison
 

of
 

experimental
 

results

方法 MSE RMSE MAE R2 Score

TCN 0. 004
 

9 0. 07 0. 050 0. 93 0. 65

LSTM 0. 016
 

0 0. 13 0. 100 0. 81 0. 36

CNN 0. 017
 

5 0. 13 0. 100 0. 78 0. 35

GRU 0. 022
 

7 0. 15 0. 120 0. 72 0. 23

MA-TCN 0. 002
 

8 0. 05 0. 042 0. 97 0. 73

4　 结束语

在寿命预测模型中,本文在原始振动信号提取

特征,并且采用多头注意力机制的时间卷积网络来

展开研究,时间卷积网络具有深层结构,可以捕捉时

间序列数据中的长期依赖性。 而通过增加多头注意

力机制,网络可以更好地关注不同时间步之间的相

关性,从而更有效地学习长期依赖关系。 并且多头

注意力机制可以融合不同时间步的特征,得到更丰

富和更有意义的表示。 增加了多头注意力机制的时

间卷积网络具有更高的预测精度,能够准确地捕捉

轴承退化信息,根据预测结果,其可决系数均达到

0. 91 以上,轴承 RUL 的预测精度得到了有效提升。
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