®15% F£9MH 2 B8 it E M5 M A
Vol.15 No.9

2025 %59 A

Intelligent Computer and Applications Sep. 2025

MRV, Bl SC, BRIEL, 45 2T MA-TCN MR shiliREI A i [ 1], B aeiHBAL5 8 H,2025,15(9) :112-116. DOI;
10. 20169/j. issn. 2095-2163. 250918

E T MA-TCN B9 i% zh & 74 Rl & 7 5 T il

BGilse', $MEX', BREHE', ERER", BRi#"?
(1 B ITRFEAAY HTHETESE, 8 201620; 2 HETREFEAAY SERIRH RS, LiF 200437)

HOE. AxRaBR S BARBOR 21 5 S0 R R A 75 i TN ASRS v A IR, 7R SCHR R BUS A IR S 5 5 2 4k R SR A ST 4
HEAE | (LA 2235 T8 2 AL H A k) 5 AR 4% ( MA-TCN) AT R B 3 A B0, B, SR IBCH I IRHBRAE 15 4B S5iei s
1E 10 4E/E IR B RFIEAE , I FFE AT SR TR 45 75 A T0 , SR A MA-TCN W 2% | Sl R (1 ol A 5 A Tl , PHM2012
Bl A Bk R TR 25 5] e ZRBCAAF 91% LA, TIE W% 7 v R % ol R 1) 980 4 - PR AT AR 0 T

KR FRAFHRERL; A H T ; RIS, 232 L

hE4 %S, TH133.3; TP183 XEkFRERD . A MEHS: 2095-2163(2025)09-0112-05

Rolling bearing life prediction based on MA-TCN
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Abstract: Aiming at the problem of imprecise bearing life prediction due to incomplete extraction of bearing degradation
information, this paper proposes extracting multidimensional features of the original vibration signals to establish a feature set, and
use a Multi-head Attention integrated Temporal Convolutional Network (MA-TCN) to carry out the life prediction of bearings. In
the research, 15 dimensions of commonly used time—domain features and 10 dimensions of frequency—domain features are extracted
as a hybrid feature set, which are used as inputs for life prediction of bearings using MA — TCN network. The decidability
coefficients of the bearing prediction results of the PHM2012 dataset all reach more than 91% , which proves that the method can
accurately carry out the life prediction of bearings.
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Fig. 2 Flow chart of rolling bearing life prediction
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A5 BRI BOE RS Eey A
1 (1,2,4,8) LeakyReLU 3x3
2 (1,2,4,8) LeakyReLU 5x5
3 (1,2,4,8) RelU 3x3
4 (1,2,4,8) RelU 5x5
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Table 3 Results of experiments
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