$£15% FoH ] BT E N E KA 2025 &9 A
Vol.15 No.9 Intelligent Computer and Applications Sep. 2025

6, 2R RIS, AF. BT G R R ST A BRI E R (V] B ARSI, 2025,15(9) 1 176-184.
DOI: 10. 20169/j. issn. 2095-2163. 25042701

EFIE NI SMASTABRRNE LTS

BERE, ERME HIRE', BXE', BERR, T, F B
(1 REREMNARBARKE RESHPELEFER, XiE 300350; 2 FEHE(XRZ)FGRATE, XiE 300385;
3 REZHBEFERAT, XiE 300074; 4 KiERFTXF BEFEE583LFER, RiE 300222)

i E. i A SRR EOLE R S s BEER e T AR A A R R BN RRE SR OB S, LR B T AR
RIS AEAT N E BRGNS T (A A2, AR SCRGHE T 56 S B B 3D B AR 75 TA-SSD, #2417 —Fh 3k 15 X 5]
SHAT N BFRGIMI B . SGP-SSD, 1B EAE TR RS AGE X5 A TR, 554 % R M s UE BRI
BRI AT TAREL A 250 Ak, BRI T S 1e) MLP AR D)2 ] i 300 4485 44 AT 43 35 1) MLPs = & AR EFR I, 42 0 T 2 R4
HESR AR (48 245 20 A 300 v AR A SR A /NI A8 RN RG24 B4R AE A 80 DA B ot /0s E A A T 48 Ak B 38 52 loss ML, 3f i
Xof b 0T S 56 LA K AT ARAR S, A% T TA-SSD B3k, AR SCRIATE KITTI SR 1T A5 v, 187 51/ Hh 45/ TR E Sk 2 2001 A
A BE 43 $E T 4. 81.3. 43 3. 56, AT IS T 3.50.2.35.0. 31, 7 Waymo B4 [, 17 N HAREY Levell/Level2 Y
AP/APH f8F512 T 2. 01/3. 17 1 3. 43/1. 97, %473 HFR Levell/Level2 ] AP/APH 55427} 2. 05/2. 66 F1 1.78/2. 11,
KR AZhEI; FT ARSI 3D HERKGI ; i85 X515, ZREBIERS

FE 5 ES . TP391 XHEFRERD . A X ERHE . 2095-2163(2025)09-0176-09

Research on semantic—guided point cloud-based pedestrian target detection algorithm
WEN Guogiang' , LI Chengkun', HU Shuntang' , CHANG Wenshuang' , GUO Yuewu®, LI Hongyan®’, SU Wei*

(1 Automobile and Rail Transportation School, Tianjin Sino—German University of Applied Sciences, Tianjin 300350, China; 2 Yipu
Optoelectronics ( Tianjin) Co. , Ltd. , Tianjin 300385, China; 3 Tianjin Shengwei Technology Co. , Ltd. , Tianjin 300074, China;
4 College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China)

Abstract; Aiming at the feature extraction bottlenecks caused by the sparsity, disorderliness, and non - uniform distribution
characteristics of LIDAR point cloud data in autonomous driving scenarios, as well as the limitations of existing point —based
detection algorithms in pedestrian target detection and modeling, this paper improves the point—based single —stage 3D object
detection algorithm IA —SSD and proposes a semantic — guided pedestrian target detection algorithm: SGP-SSD. The algorithm
introduces a semantic—guided downsampling strategy during the sampling process, comprehensively considering both the semantic
and distance information of points. Structural optimizations are incorporated, including a reverse MLP module with inverted
bottleneck structures and separable MLPs to enhance feature extraction. Additionally, a multi—scale feature aggregation module is
proposed to enable the centroids generated by voting to simultaneously aggregate features from small and large radii, along with a
voting loss mechanism optimized for small target detection. Through comparative experiments, ablation studies, and visual
validation, the proposed algorithm achieves significant improvements over IA—SSD. On the KITTI validation set for the pedestrian
category, detection accuracy increases by 4. 81, 3.43, and 3. 56 for easy/moderate/hard difficulty levels, respectively, and for the
cyclist category, improvements of 3. 50, 2.35, and 0. 31 are observed. On the Waymo validation set, the Levell/Level2 AP/APH
metrics for pedestrian targets improve by 2. 01/3. 17 and 3.43/1. 97, while cyclist targets achieve AP/APH gains of 2. 05/2. 66 and
1.78/2.11 at Levell/Level2.
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0 3| P FE RS T2 ) BB A R s 1 R EOR B A
BIREM B RIS A R T B R R
H 302 3 AR IE AT Rk B2 i SRR AT BiVE R DA ol i ik B Sk 2 AL R S

y >N

[l

E£mA . KHEHHZFHIR H (2020K1086)
BB WEE(1984—) , 5 W4, Bl , W44 SUF , 257 0 B RE MBI R BRI AR . Email :2981270182@ qq. com,,
ks B HA . 2025-04-27 PR o5 4 L5 A




5 9 W] TSR, % BTG RR SR ST BRI 5T 177

B LIRS IR BN % R G S B H AR
LB/ A 22 YR B SR, Ry A T R A OO S
| HOH I 20 A% SR BN - 52 B %o T B B 5% 11 5
AARAT o BB A PR R AR SR S B Ok
IR A 23 3 e = A U AT G W R R A TR U
s () J PR AR AT RE 07 R R e A I, e B B
PSR mA RS (AROEER N =
Bl HAT R G Ty FIEAER S 0 A S5 4, S BUE 5t
B A 2 M 2% ( Convolutional Neural Networks, CNN)
T ME L B B R BURFAE 8 0 A B 1 = 4
SPAF R AAT 212 Sk ik A Ao e 1) S R A

Shi 25273 7 4R Y PointRCNN #4575 56 T
(9 3D s zx H A s 0 400 ds IR 0F R | 320 k2R T
W B R 25 5548, Sl f i ;SR FE (FPS) T RIS
KT R4 2, IR DI I3 26 %) 4
FHATOAL A5 B B AR B . fl T I B 4%
SEME ZRRCRAL T B IR, Yang 2525 5 0 4R —
i R R B BEA KL % 3DSSD Bl —
Fofr [ Bsf 1) FHRRAE R L] BE 25 YR A R A SR,
PointNet k5> 5 =4 1E, 5 T PointNet H1 A9
FP 2 LISAF AT I VERE . H 7% 58 1) dc i s R A
TBAUE T s Z I S ECRAER B
MARZ AN W 5, B Zhang J524 5
2 BB BEFLL TA-SSD i 2 FhT 2 > Y T
)4 55 1) SRAE SR M R e R S G P T 5% A, O

AT LR SO B DL 5 S8 6] rpoc (1 Al
K61, B —J7 I, Chen %524 F 0GR TR 5
MU B, PR SASA XTI RAE S PHT
SCSAYEL B, 5 TASSD A [R] A9 J2: , I A8 — I Ml ik 45
HISCAL, TRLE A 5 S 5 BB B Y
PRS- EdE SoR AR AR, AT B A R e FE 5 H
BRI FE

h T G AL EUOR LN 5 2, B AT 3D R
EAEARZ 7 AR P EARKHIE T 2D MG gR L X
SR TUARI AR, DTS i RS RG JE  JC 2/ H AR
RSIIORS B TS T A B O vk AR R IR S 2 I
AT BB sS AN HA R | A ZE I 2% Ok 15
UL BT Z2 M40 I S0 RIS sz B
BEAR S X 5 H PRI B TA-SSD #E AT T AH B 2
HE R T IFE BT S AT B AR R
(SGP-SSD) .

1 IA-SSD EENE

IA-SSD"* J&— A R B2 s F AR A 5, 3
RSN 1 FT7R o SR T B i g A 4 T
RN AR 38 1 S ) TR SR A R B S B T 5
AT AS , FEAHT LT SO0 RIS ok A 11
S A R TN A, AR MR O A 5 R AR R
R RFAIE R SR S RO R A S A IRT

Bl 1 TA-SSD HEix&HE
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Fig. 3  Schematic diagram of semantic — guided downsampling
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Table 3 Experimental results of mAP in KITTI dataset validation set

Jrik Easy Mod Hard
IA-SSD 80. 48 70.34 65.79
EN'S 83.02 71.72 67.31

(2) FTF Waymo £0¥5 % 1974, Waymo Hi
RIIEE & NP EE R LR 4, 3R 4 v AR
MIEETEAT N H AR Level _1 Level _2( Level _1. Ul &
BORT 5 3F BAR & AT EHE Th RFRIE N Level 2,
Level 2. WA SR T TR | H/ANTF&T 5,805
FE 5 AT K P ARIE N Level _2,) MEJE 2 5 Y
AP/APH $8FR2TF T 2.01/3. 17 .3.43/1. 97, 1E %5
7% BAF Level_1 Level _2 MEFE 9% 5] I i) AP/APH

SFRIETFT 2.05/2.66.1.78/2. 11, X} T Level 2
i) AP/APH #H kb TA-SSD #1 |7+ T 0. 92/0. 32,
Ry PR B2 ) 2R AR AT N — FF T 4Ok 1R
ST A28 /0N B bR i ettt T T PR HE Y 4
AT IR

®4 Waymo HIEEWIEEPELINITMHLER
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Methods Level _1 Level 2 Level_1 Level 2 Level_1 Level 2
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Table 6 Comparative experiment on parameters of semantically

guided downsampling module

Sampling Pedestrian

Method Car Moderate cyclist
D-FPS 82. 34 49.27 65.28
Cir-aware 82. 82 56. 18 71.85
FPS 82. 51 53.45 65.84
S-FPS-0. 1 82.97 54.51 66.74
S-FPS-0.5 83.52 54.83 66.28
S—FPS-1 83. 06 59.33 72.76
S-FPS-2 83.37 57.20 68. 54
S-FPS-5 83. 38 58.02 69. 46
S-FPS-10 83.27 57.16 69. 53

(3) ZRERH AR SR, 3k 6 &t
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Table 7 Analysis of sampled point clouds by multi—scale feature

aggregation module

INEAR Pedestrian
. Car Cyclist
KR Moderate
2 82.72 57.24 70. 48
3 83. 06 59.33 72.76
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Fig. 6 Comparison chart of road scene visualization results
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Fig. 7 Comparison chart of pedestrian scene visualization results
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