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Intrusion detection based on online knowledge distillation
and contrastive learning
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Abstract; With the widespread application of the Internet of Things (IoT) across various industries and the continuous acceleration
of its development, the types of devices involved are growing rapidly, leading to an urgent network security threat due to the
emergence of multiple new vulnerabilities in these devices. Most behavior—based Network Intrusion Detection Systems (NIDS) rely
on artificial intelligence models. During multiple attack —defense drills, it is found that attacks concentrate on vulnerable edge
devices, which often have insufficient computing power and limited storage space, making it impossible to deploy detection models
with numerous parameters. This study proposes an attention module based on linear knowledge distillation gradient alignment, which
dynamically selects high—value features from the teacher model. After that, the research enhances the robustness of the student
model against adversarial samples by contrastive learning, allowing the lightweight student model to distill more knowledge within a
limited training time. Compared to traditional intrusion detection models, the proposed student model based on Convolutional Neural
Networks (CNN) employing online Knowledge Distillation (KD) reduces the number of hidden layers in the inference model to 6%
of the original model while maintaining 92% accuracy and 98% recall. This provides robust security assurance for IoT devices under
low—power conditions.
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Fig. 1  Architectural diagram of the teacher — student network

model
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Table 1 Teacher network model structure

S 2 45 S LRIZ0N SRR
Conv2d-1 [-1,8, 12, 12] 224
BatchNorm2d-2 [-1,8, 12, 12] 16
ReLU-3 [-1,8, 12, 12] 0
Conv2d-4 [-1,8, 12, 12] 584
BatchNorm2d-5 [-1,8,12,12] 16
Conv2d—6 [-1,8, 12, 12] EY)
ReLU-7 [-1,8, 12, 12] 0
ResidualBlock—8 [-1.8, 12, 12] 0
Conv2d—9 [-1,8, 12, 12] 584
BatchNorm2d-10 [-1,8, 12, 12] 16
ReLU-11 [-1.8, 12, 12] 0
Conv2d-12 [-1,8, 12, 12] 584
BatchNorm2d—13 [-1,8, 12, 12] 16
ReLU-14 [-1,8, 12, 12] 0
ResidualBlock—15 [-1,8, 12, 12] 0
Conv2d-16 [-1,8, 12, 12] 584
BatchNorm2d-17 [-1,8, 12, 12] 16
ReLLU-18 [-1, 8,12, 12] 0
Conv2d—19 [-1,8, 12, 12] 584
BatchNorm2d-20 [-1,8, 12, 12] 16
ReLU-21 [-1.8, 12, 12] 0
ResidualBlock—22 [-1,8, 12, 12] 0
Conv2d-23 [-1,8, 12, 12] 584
BatchNorm2d-24 [-1,8, 12, 12] 16
ReLU-25 [-1,8, 12, 12] 0
Conv2d-26 [-1,8, 12, 12] 584
BatchNorm2d-27 [-1,8, 12, 12] 16
ReLU-28 [-1, 8,12, 12] 0
ResidualBlock—29 [-1,8, 12, 12] 0
Linear—30 [-1,2] 2 306
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Table 2 Student network model structure

2 A2 T LRIZ0N e
Conv2d-1 [-1,1, 12, 12] 28
BatchNorm2d-2 [-1,1, 12, 12] 2
ReLU-3 [-1,1,12, 12] 0
Conv2d—4 [-1,1, 12, 12] 10
BatchNorm2d-5 [-1,1,12,12] 2
Conv2d—6 [-1,1,12, 12] 4
ReLU-7 [-1,1, 12, 12] 0
ResidualBlock—8 [-1.1, 12, 12] 0
Conv2d—9 [-1,1, 12, 12] 10
BatchNorm2d—10 [-1,1, 12, 12] 2
ReLU-11 [-1,1, 12, 12] 0
Conv2d-12 [-1,1, 12, 12] 10
BatchNorm2d— 13 [-1,1, 12, 12] 2
Rel.U- 14 [-1,1, 12, 12] 0
ResidualBlock—15 [-1,1, 12, 12] 0
Conv2d-16 [-1,1, 12, 12] 10
BatchNorm2d—17 [-1,1, 12, 12] 2
ReLLU-18 [-1,1, 12, 12] 0
Conv2d-19 [-1,1, 12, 12] 10
BatchNorm2d-20 [-1,1, 12, 12] 2
ReLU-21 [-1,1, 12, 12] 0
ResidualBlock—22 [-1,1, 12, 12] 0
Conv2d-23 [-1,1, 12, 12] 10
BatchNorm2d—24 [-1,1, 12, 12] 2
ReLU-25 [-1,1, 12, 12] 0
Conv2d—26 [-1,1, 12, 12] 10
BatchNorm2d-27 [-1,1, 12, 12] 2
ReLU-28 [-1,1, 12, 12] 0
ResidualBlock—29 [-1,1, 12, 12] 0
Linear—30 [-1,2] 290
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Fig. 2 Accuracy comparison of the student network with different

parameter sizes
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Table 3 Impact of student network parameter number on
prediction performance %

K2 5 iRES FEES LEES F1 534

7 91.75 87.50 98.67 92.75

6 91.80 87.77 98. 85 92.98

5 91. 60 87.36 98.62 92.65

4 91.50 87.20 98.58 92.54

3 91.40 88.04 98. 00 92.75

2 91.35 87.05 98.50 92.42

1 91.35 86. 82 96. 67 91.48
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Fig. 3 Online knowledge distillation network architecture diagram
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Table 4 Performance impact table of various networks %
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