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摘　 要:
 

随着物联网在各个行业的广泛应用,发展速度也在不断加快,其中包含的设备类型增长非常迅速,设备中多种新型漏

洞构成了紧迫的网络安全威胁。 大部分基于行为的入侵检测系统(Network
 

Intrusion
 

Detection
 

System,NIDS)依赖人工智能模

型。 在多次攻防演练中,发现攻击集中于脆弱的边缘端,这些边缘端设备通常算力不足且存储空间有限,无法部署参数较多

的检测模型。 本文基于线性知识蒸馏梯度对齐的注意力模块,动态筛选教师模型的高价值特征,并通过对比学习,增强学生

模型对对抗性样本的鲁棒性,使轻量化学生模型在有限的训练时间内蒸馏出了更多的知识。 与传统的入侵检测模型比较,所
提的基于卷积神经网络(Convolutional

 

Neural
 

Network,CNN)的在线知识蒸馏(Knowledge
 

Distillation,KD)的学生模型在保持

92%准确性和 98%召回率的性能下,将推理计算的参数数量降低至教师模型的 6%,为低功耗条件下的物联网设备提供了有

力安全保障。
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Abstract:
 

With
 

the
 

widespread
 

application
 

of
 

the
 

Internet
 

of
 

Things
 

( IoT)
 

across
 

various
 

industries
 

and
 

the
 

continuous
 

acceleration
 

of
 

its
 

development,
 

the
 

types
 

of
 

devices
 

involved
 

are
 

growing
 

rapidly,
 

leading
 

to
 

an
 

urgent
 

network
 

security
 

threat
 

due
 

to
 

the
 

emergence
 

of
 

multiple
 

new
 

vulnerabilities
 

in
 

these
 

devices.
 

Most
 

behavior-based
 

Network
 

Intrusion
 

Detection
 

System̀s
 

(NIDS)
 

rely
 

on
 

artificial
 

intelligence
 

models.
 

During
 

multiple
 

attack - defense
 

drills,
 

it
 

is
 

found
 

that
 

attacks
 

concentrate
 

on
 

vulnerable
 

edge
 

devices,
 

which
 

often
 

have
 

insufficient
 

computing
 

power
 

and
 

limited
 

storage
 

space,
 

making
 

it
 

impossible
 

to
 

deploy
 

detection
 

models
 

with
 

numerous
 

parameters.
 

This
 

study
 

proposes
 

an
 

attention
 

module
 

based
 

on
 

linear
 

knowledge
 

distillation
 

gradient
 

alignment,
 

which
 

dynamically
 

selects
 

high-value
 

features
 

from
 

the
 

teacher
 

model.
 

After
 

that,
 

the
 

research
 

enhances
 

the
 

robustness
 

of
 

the
 

student
 

model
 

against
 

adversarial
 

samples
 

by
 

contrastive
 

learning,
 

allowing
 

the
 

lightweight
 

student
 

model
 

to
 

distill
 

more
 

knowledge
 

within
 

a
 

limited
 

training
 

time.
 

Compared
 

to
 

traditional
 

intrusion
 

detection
 

models,
 

the
 

proposed
 

student
 

model
 

based
 

on
 

Convolutional
 

Neural
 

Networks
 

(CNN)
 

employing
 

online
 

Knowledge
 

Distillation
 

(KD)
 

reduces
 

the
 

number
 

of
 

hidden
 

layers
 

in
 

the
 

inference
 

model
 

to
 

6%
 

of
 

the
 

original
 

model
 

while
 

maintaining
 

92%
 

accuracy
 

and
 

98%
 

recall.
 

This
 

provides
 

robust
 

security
 

assurance
 

for
 

IoT
 

devices
 

under
 

low-power
 

conditions.
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0　 引　 言

近年来,物联网边缘端设备呈现规模化发展的

趋势,设备的种类和网络复杂度不断增加,如何在边

缘端有效地进行入侵检测是目前亟需解决的问

题[1-3] 。 特别是在极端环境下部署的依靠电池工作

的边缘端,抗攻击能力较弱,对入侵检测算法的实时

性和精准度要求更高[4] 。 某企业创新开展“平战结



合,精准防护”网络安全专项工作,以“动态防御,主
动防御,纵深防御,精准防护,整体防护,联防联控”
的思想实现了云边协同的立体网络防护模式。

结合动态防御策略,边缘侧与云中心将负责不

同的计算任务。 在数据流量较大时,由云中心进行

流量监测、设备检查等工作,收集威胁信息;边缘侧

实时进行入侵检测,在边缘侧对网络通信内容进行

抓包并压缩, 提取类似经典的入侵检测数据集

(Knowledge
 

Discovery
 

and
 

Data
 

Mining,KDD)的格式

特征[5]并保存。 在数据流量较少时,边缘侧将所有

收集的数据上传至云中心作为训练集,构建新的入

侵检测识别模型,通过知识蒸馏获得轻量级的学生

模型,将在线训练好的学生模型发送给边缘端进行

更新[6] 。
传统的 NIDS 基于已知攻击的签名来判断攻击

的类型,此外,还需要训练已知威胁演变出的相似的

复杂攻击的签名[7] 。 典型的机器学习分类技术基

于现有标记的系统活动的数据集[8-16] 。 在大多数情

况下,物联网设备只要判断正常或恶意,即输出为二

元分类,但这些已有算法的复杂性大大超过了边缘

端的计算能力。
不均衡的样本分布是入侵检测中面临的主要挑

战。 通常,正常流量样本容易收集,而恶意流量样

本、尤其是高级攻击样本,却难以获取。 许多研究者

提出了结合对比学习与深度学习入侵模型的方法来

解决这一问题[17-18] 。 基于以上的背景,提出了一种

由多个残差块构成的 CNN 模型的在线知识蒸馏和

的对比学习方法,在算法层面针对不均衡的数据类

别分布进行了训练加强,实现了轻量级入侵检测模

型的判断准确性提升的目标。

1　 知识蒸馏

已有大量的研究表明,深度学习模型在具备充

足可训练数据的情况下,能够实现相较于机器学习

模型更优秀的入侵检测效果。 在入侵检测领域,深
度学习模型面临着一个显著的矛盾:既需要保持高

准确性,又需要具有轻量级特征。 知识蒸馏的目标

是通过深度学习的教师网络训练一个更紧凑、更准

确的学生模型。
本文仿照 ResNet 构建了多个残差块。 每个残

差块包括 2 个卷积层,每个卷积层后面是池化层和

ReLU 激活函数。 在不改变残差块的数量的情况

下,教师网络和学生网络的结构非常相似,在对比学

习时不影响分类结果。 在这种设计下,可以灵活削

减每个残差块中的卷积层参数数量。 学生网络的每

个残差块的隐层参数数量可以比教师网络的少。
　 　 教师-学生网络模型结构如图 1 所示。 以下段

落将介绍某企业部署于其物联网的一种在线知识蒸

馏的教师-学生网络模型,比对在线的蒸馏模型和

离线的蒸馏模型的学生网络准确性,同时通过 NSL-
KDD 数据集证实对比学习的方法可有效改善训练

数据的平衡性。

图 1　 教师-学生网络模型结构图

Fig.
 

1 　 Architectural
 

diagram
 

of
 

the
 

teacher - student
 

network
 

model

2　 数据集及网络结构

实验的数据集分为训练集、验证集和测试集。
在训练集中,选取了比较新的 NSL-KDD 数据文件,
得到了比较平衡的数据类型分布。 这个数据集是通

过从
 

DARPA-KDD 中移除重复记录而获得的入侵

检测基准。 该数据集包含 38 种攻击类型,其中 24
种用于训练集,14 种用于测试集。 这 38 种攻击类

型为 DoS、Probe、U2R 和 R2L。 这个新的数据集包

含 148
 

517 条流量记录,每个记录包含 169 维的统

计网络数据特征。 训练集包含 58
 

000 条攻击数据

和 60
 

000 条正常数据。 验证集包含 630 条攻击数

据和 7
 

343 条正常数据。 测试集合包含 12
 

833 条攻

击数据和 9
 

711 条正常数据。 为了最大限度保持各

个特征的有效信息,在转换成图像之前对所有的数

据做鲁棒缩放器归一化处理。 在鲁棒缩放中,从给

定特征的值中减去中位数,然后除以四分位数范围,
转换为分布在[0,

 

1]之间的数值。 预测时需要将所

有的数值根据同样的鲁棒缩放器转换为对应的[0,
 

1]之间的数值。
通过对残差块的组合可以构建二维的 CNN 分

类的深度学习网络[19-20] 。 为了提取数据中高度复

杂的特征,采用多个残差块( Block) 中的多个卷积

层、跳跃连接和输出来避免梯度消失。 具体模型结

构见表 1、表 2。
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表 1　 教师网络模型结构表

Table
 

1　 Teacher
 

network
 

model
 

structure

教师网络各层类型 输出形状 参数数量

Conv2d-1 [ -1,
 

8,
 

12,
 

12] 224

BatchNorm2d-2 [ -1,
 

8,
 

12,
 

12] 16

ReLU-3 [ -1,
 

8,
 

12,
 

12] 0

Conv2d-4 [ -1,
 

8,
 

12,
 

12] 584

BatchNorm2d-5 [ -1,
 

8,
 

12,
 

12] 16

Conv2d-6 [ -1,
 

8,
 

12,
 

12] 32

ReLU-7 [ -1,
 

8,
 

12,
 

12] 0

ResidualBlock-8 [ -1,
 

8,
 

12,
 

12] 0

Conv2d-9 [ -1,
 

8,
 

12,
 

12] 584

BatchNorm2d-10 [ -1,
 

8,
 

12,
 

12] 16

ReLU-11 [ -1,
 

8,
 

12,
 

12] 0

Conv2d-12 [ -1,
 

8,
 

12,
 

12] 584

BatchNorm2d-13 [ -1,
 

8,
 

12,
 

12] 16

ReLU-14 [ -1,
 

8,
 

12,
 

12] 0

ResidualBlock-15 [ -1,
 

8,
 

12,
 

12] 0

Conv2d-16 [ -1,
 

8,
 

12,
 

12] 584

BatchNorm2d-17 [ -1,
 

8,
 

12,
 

12] 16

ReLU-18 [ -1,
 

8,
 

12,
 

12] 0

Conv2d-19 [ -1,
 

8,
 

12,
 

12] 584

BatchNorm2d-20 [ -1,
 

8,
 

12,
 

12] 16

ReLU-21 [ -1,
 

8,
 

12,
 

12] 0

ResidualBlock-22 [ -1,
 

8,
 

12,
 

12] 0

Conv2d-23 [ -1,
 

8,
 

12,
 

12] 584

BatchNorm2d-24 [ -1,
 

8,
 

12,
 

12] 16

ReLU-25 [ -1,
 

8,
 

12,
 

12] 0

Conv2d-26 [ -1,
 

8,
 

12,
 

12] 584

BatchNorm2d-27 [ -1,
 

8,
 

12,
 

12] 16

ReLU-28 [ -1,
 

8,
 

12,
 

12] 0

ResidualBlock-29 [ -1,
 

8,
 

12,
 

12] 0

Linear-30 [ -1,
 

2] 2
 

306

　 注:
 

总参数为 6
 

778

　 　 表 1 中展示的教师网络每个卷积层中都设置了

8 个隐层。 表 2 中展示的学生网络在每个卷积层中

都设置了 1 个隐层。 从参数总量可以看出,学生网

络在最简单的时候可以达到教师模型总参数量的

6%。 在离线状态下,从训练集中随机抽取 50
 

000
条数据训练教师网络,然后使用剩余的训练集数据

在教师网络的教导下离线蒸馏学生网络,可对比学

生网络参数在训练达到 30 次之后,隐层数对训练准

确率的影响。

表 2　 学生网络模型结构表

Table
 

2　 Student
 

network
 

model
 

structure

学生网络各层类型 输出形状 参数数量

Conv2d-1 [ -1,
 

1,
 

12,
 

12] 28

BatchNorm2d-2 [ -1,
 

1,
 

12,
 

12] 2

ReLU-3 [ -1,
 

1,
 

12,
 

12] 0

Conv2d-4 [ -1,
 

1,
 

12,
 

12] 10

BatchNorm2d-5 [ -1,
 

1,
 

12,
 

12] 2

Conv2d-6 [ -1,
 

1,
 

12,
 

12] 4

ReLU-7 [ -1,
 

1,
 

12,
 

12] 0

ResidualBlock-8 [ -1,
 

1,
 

12,
 

12] 0

Conv2d-9 [ -1,
 

1,
 

12,
 

12] 10

BatchNorm2d-10 [ -1,
 

1,
 

12,
 

12] 2

ReLU-11 [ -1,
 

1,
 

12,
 

12] 0

Conv2d-12 [ -1,
 

1,
 

12,
 

12] 10

BatchNorm2d-13 [ -1,
 

1,
 

12,
 

12] 2

ReLU-14 [ -1,
 

1,
 

12,
 

12] 0

ResidualBlock-15 [ -1,
 

1,
 

12,
 

12] 0

Conv2d-16 [ -1,
 

1,
 

12,
 

12] 10

BatchNorm2d-17 [ -1,
 

1,
 

12,
 

12] 2

ReLU-18 [ -1,
 

1,
 

12,
 

12] 0

Conv2d-19 [ -1,
 

1,
 

12,
 

12] 10

BatchNorm2d-20 [ -1,
 

1,
 

12,
 

12] 2

ReLU-21 [ -1,
 

1,
 

12,
 

12] 0

ResidualBlock-22 [ -1,
 

1,
 

12,
 

12] 0

Conv2d-23 [ -1,
 

1,
 

12,
 

12] 10

BatchNorm2d-24 [ -1,
 

1,
 

12,
 

12] 2

ReLU-25 [ -1,
 

1,
 

12,
 

12] 0

Conv2d-26 [ -1,
 

1,
 

12,
 

12] 10

BatchNorm2d-27 [ -1,
 

1,
 

12,
 

12] 2

ReLU-28 [ -1,
 

1,
 

12,
 

12] 0

ResidualBlock-29 [ -1,
 

1,
 

12,
 

12] 0

Linear-30 [ -1,
 

2] 290

注:总参数为 408

　 　 学生网络不同参数量的准确性对比如图 2 所

示。 当通过调整学生网络的卷积层、隐层数来获得

不同的参数数量时,即使使用最小的参数数量也能

获得很好的训练结果。 使用学生网络训练结果对测

试集进行测试。 在涉及入侵检测任务的情况下,所
有结果对应以下 4 种类别:
　 　 (1)真正例( True

 

Positive,TP):恶意样本被正

确地分类为恶意。
(2)真反例

 

(True
 

Negative,TN):正常样本被正
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确地分类为正常。
(3)假正例(False

 

Positive,FP):正常样本被错

误地分类为恶意。
(4)假反例(False

 

Negative,FN):恶意样本被错

误地分类为正常。 定义准确率 ( Acc )、 精确度

(Pre)、召回率(Rec)、 F1 分数的数学公式如下:

Acc = TP + TN
TP + TN + FP + FN

(1)

Pre = TP
TP + FP

(2)

Rec = TP
TP + FN

(3)

F1 = 2·Pre·Rec
Pre + Rec

(4)

1.0

0.8

0.6

0.4

0.2

准
确

度

训练次数/次
0 10 20 30

隐层数为7
隐层数为6
隐层数为5
隐层数为4
隐层数为3
隐层数为2
隐层数为1

图 2　 学生网络不同参数量的准确性对比图

Fig.
 

2　 Accuracy
 

comparison
 

of
 

the
 

student
 

network
 

with
 

different
 

parameter
 

sizes

　 　 接下来,研究得到的学生网络参数数量对预测

性能影响见表 3。 观察到随着隐层数的下降,学生

网络的判别能力下降,但是仍然能够保持在较高的

水平。
表 3　 学生网络参数数量对预测性能影响表

Table
 

3 　 Impact
 

of
 

student
 

network
 

parameter
 

number
 

on
 

prediction
 

performance %

隐层数 准确率 召回率 精确率 F1 分数

7 91. 75 87. 50 98. 67 92. 75

6 91. 80 87. 77 98. 85 92. 98

5 91. 60 87. 36 98. 62 92. 65

4 91. 50 87. 20 98. 58 92. 54

3 91. 40 88. 04 98. 00 92. 75

2 91. 35 87. 05 98. 50 92. 42

1 91. 35 86. 82 96. 67 91. 48

　 　 从表 3 中可以看出,在参数量减少的过程中,预
测精度没有出现显著降低,说明在预测准确率达到

88%以上的情况下就可以将学生网络的参数调整至

最低隐层数量。 在入侵检测领域,达到如上的准确

率仍然不足以较好地应对网络安全威胁。 在保持轻

量化的同时,必须对学生网络的蒸馏模型进行后续

优化与有效的改进,以便于进一步提高判断准确性。

3　 模型改进及实验

根据深度神经网络在入侵检测网络流量识别过

程中的特点,加入了在线蒸馏和对比学习。 与现有

的入侵检测算法不同,本文提出了一种基于在线知

识蒸馏的联合训练方法。 其中,多隐层的卷积网络

充当教师网络,较少隐层数量的学生网络充当学生

网络,
 

实现了教师网络和学生网络的联合训练和优

化。 本文将这种联合训练优化的教师-学生网络称

为在线知识蒸馏。
3. 1　 在线知识蒸馏

为了体现端到端学习的互补优势,算法通过不

同隐层数量的学生网络生成了的初步判断的特征

集,根据输出的特征集之间的差异就可以得到特征

损失。 通过将蒸馏损失、对比损失、特征损失相结

合,整体上实现了在线知识蒸馏。
　 　 给定网络数据样本集 x = [X1,

 

X2,…,Xn],其
中 X i 属于 d 维空间,以及所对应标签集 y

 

=
 

[Y1,
 

Y2,…,Yn],这里 Yi 属于{0,1} 集合,为了获得更好

的预测性能,通常需要使用预定义的损失函数对模

型进行优化, 目前交叉熵损失函数是最广泛使用的

损失函数。 在线知识蒸馏网络结构如图 3 所示,在
线知识蒸馏网络分为 2 个部分:学生网络和教师网

络。

教师网络

学生网络

图 3　 在线知识蒸馏网络结构图

Fig.
 

3　 Online
 

knowledge
 

distillation
 

network
 

architecture
 

diagram

　 　 在学生分支中,教师网络和学生网络对比,每一

个块都形成了特征损失,并传递给了学生网络进行

修正。 给定一个 Logits 向量 Z 作为深度模型最后一

个残差块经过全连接层的输出,基于响应的知识蒸

馏的教师损失 L 可以表述为:
LT = LCE[y,σ(ZT;T = t)] + LC (5)

　 　 其中, ZT 表示教师网络的 Logits;LCE 表示教师
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网络 y 标签的交叉熵损失;σ 表示加入温度参数 T
后的 Softmax 函数; t 表示自适应温度;LC 表示对比

损失。
在分类任务中,基于响应的知识蒸馏算法的重

点是学生学习教师模型输出的软目标知识,与硬目

标知识相比,教师的软目标可以提供给学生更多的

类间知识。 神经网络通常通过使用 Softmax 函数输

出层产生二分类概率 q, 对于一个网络的输出

Logits,一种网络流量的分类概率值由以下公式计算

得出:

q(Nor) =
exp[ZS(Nor) / T]

exp[ZS(Nor) / T] + exp[ZS(Att) / T]
(6)

q(Att) =
exp[ZS(Att) / T]

exp[ZS(Nor) / T] + exp[ZS(Att) / T]
(7)

　 　 其中, ZS 表示学生网络输出的 Logits;Nor 表示

正常;Att 表示攻击; T 值表示蒸馏的温度。 当 T 值

设置为 1 时,为标准的 Softmax 函数;当 T 上升时,
Softmax 函数产生的概率分布变得更软,可以给知识

蒸馏过程中的学生网络提供更多的正常和攻击概率

知识。
对于训练集中的真实标签,在训练学生网络时,

同时使用学生模型的真实标签和教师模型生成的软

标签能够产生更好的效果。 因此,教师训练学生的

损失函数由学生自身的损失函数和蒸馏损失函数结

合构成,在线知识蒸馏算法的学生网络总损失值 LS

定义为:
LS(x,W) = (1 - 2λ)LCE[y,σ(ZS;T = 1)] +

　 　 λLCE[σ(ZT;T = t),σ(ZS;T = t)] +
　 　 λLCE(featureT,featureS)

 

(8)
　 　 其中, x表示输入值;W表示学生模型的参数;λ
表示权重系数;LCE 表示交叉熵损失;y 表示真实标

签;σ 表示加入温度参数 T后的 Softmax 函数; t表示

自适应蒸馏温度;
 

ZS
 和ZT

 分别表示学生模型和教师

模型的输出 Logits; featureT 和 featureS 分别表示教

师每个残差块的输出特征。 设置蒸馏损失和特征损

失为同一个权重系数 λ 的原因是在此设置下,网络

中的每个模块都能得到及时的矫正。 教师网络的总

损失函数需要使用到对比学习,因此在下节介绍。
3. 2　 对比学习

对比学习根据数据样本及其增强视图之间的内

在关系构建对比任务。 如果考虑样本之间的标签关

系,则通过优化监督对比损失,就可以使正样本之间

的距离达到最小化,而负样本之间的距离达到最大

化。 本文采用了随机序列遮蔽方法来构建增强视

图,结合样本标签,生成正负样本对。 对比交叉熵损

失用于以端到端的方式支持对比分类模型的训练,
能够同时优化对比损失和分类损失。

内部类多样性与跨类相似性的存在,为识别攻

击流量带来了重大挑战。 以网络流量样本 X 和标

签 Y 为基础,输出的 Logits 为 Z, 可以通过同一类别

之间样本的平均距离来简单表示内部类距,对此可

以表示为:
 

Dintra = 1
n2 ∑

n

i = 1
∑

n

j = 1
d(Z i,Z j)

 

where
 

(yi = y j) (9)

通过计算不同类别之间样本的平均距离,来衡

量类间距离,具体数学公式如下:

　 Dinter =
1
n2 ∑

n

i = 1
∑

n

j = 1
d(Z i,Z j)where

 

(yi ≠ y j) (10)

为了获得更佳的检测结果,不仅要专注于预测

标签,还需要关注样本空间本身的自然属性。 在对

比学习中,温度是一个用于调整相似度分布的超参

数。 在对比损失函数中,温度影响不同样本之间的

相似度计算。 当温度较高时,相似度值相对平滑,所
有样本的相似度差异变小;当温度较低时,相似度值

变得更加尖锐,模型将更加关注最相似和最不相似

的样本。 适当的温度可以帮助模型更好地收敛,避
免梯度消失或模型过于敏感的问题,因此提出对比

学习的动态调整的温度选择,推得的公式如下:

TC = 1
1 + Dintra

(11)

　 　 其中, TC 表示对比温度。 整体对比损失可以表

示为相似样本的损失和不相似样本的损失之和,数
学公式定义为:

　 LC = ∑
n

i = 1
[YiD2

intra + (1 - Yi)(M - Dintra) 2] (12)

其中, M 表示样本边界排斥区域,即一个最小

的距离差异,即要求在训练过程中,正样本的距离应

该小于负样本的距离加上 M。
同时,蒸馏的损失计算中也需要引入一个自适

应温度函数。 通过调整蒸馏温度 T, 可以控制输出

概率分布的平滑程度。 较高的温度会使得概率分布

更加平滑,从而使得模型学习到更为丰富的知识。
反之,较低的温度则会使概率分布更加尖锐,强调最

有可能的类别。 自适应温度方法旨在根据训练过程

中学生和教师的 Logits 的余弦相似度来动态调整温

度 T。 其中,余弦相似度的计算公式为:

CosSim(ZSi,
 

ZTi) =
ZSi × ZTi

‖ZTi‖ × ‖ZSi‖
(13)
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　 　 其中, ZTi 和 ZSi 分别表示教师、学生网络在第 i
步训练产生的 Logits。 动态温度 T 可由如下公式计

算求得:
T = G·[CosSim(ZSi,

 

ZTi) + 1] (14)
　 　 其中, G 是经验参数,一般可以选取 5 ~ 10 之间

的数值。 这里,可以使用 5 作为实验的温度。
3. 3　 消融实验

为验证所提在线知识蒸馏和对比学习算法的有

效性,本文进行了消融研究来评估以下关键模块的

性能:自适应温度、联合训练、对比学习。
本文在实验中构建了以下变体:变体 A,未采用

自适应温度(本文将其替换为固定温度 T = 10); 变

体 B,未采用联合训练(本文将其替换为教师先训

练、然后和学生进行知识蒸馏);变体
 

C,未采用对比

学习(本文将其替换为随机顺序的训练样本)。
　 　 本文在 NSL-KDD 的训练集上对这些变体进行

了 30
 

回合的训练,并在测试数据集上对训练后的变

体进行了测试,通过量化比较来评估每个变体的性

能,结果见表 4。 表 4 中,本体表示未替换任何模块

的网络结构。
表 4　 各类网络性能影响表

Table
 

4　 Performance
 

impact
 

table
 

of
 

various
 

networks %

类型 准确率 召回率 精确率 F1 分数

本体 92. 35 88. 16 98. 89 93. 22

变体 A 91. 89 87. 65 98. 73 92. 86

变体 B 91. 75 87. 50 98. 67 92. 75

变体 C 91. 60 87. 36 98. 62 92. 65

　 　 图 4 中, 使用 ROC 曲线 ( Receiver
 

Operating
 

Characteristic
 

Curve,ROC)评估本文所提出的模型的

二分类性能。 分析可知,AUC(Area
 

Under
 

Curve)达

到 0. 93,具备较好的二分类能力。 与离线蒸馏的学

生网络相比,准确率稳定提高了约 1%,其余指标无

明显下降。

ROC曲线（AUC=0.93)
随机猜测

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

假阳性率

真
正

率

图 4　 所提模型的 ROC 曲线

Fig.
 

4　 ROC
 

curve
 

of
 

the
 

proposed
 

model

4　 结束语

根据某集团公司“网络安全运营能力建设工

程”的网络安全整体规划,落实公安部“提升安全监

测预警和应急处置能力”要求,积极响应国家“2024
年专项行动新形势” 要求,满足数字化转型和智能

化发展需求,解决数字化业务面临系统安全、数据泄

露等安全风险,需增强常态化安全防护措施。
在物联网的安全防护中,为解决长期存在的边

缘端防护难题,引入云边协同模式。 针对边缘侧能

耗受限的问题,本文提出了对比学习和在线知识蒸

馏的入侵检测识别方法。 主要创新有:
(1)使用鲁棒缩放器对转换图像前的数据做归

一化处理,将数据降维后统一转换为二维的灰度图

像。
(2)引入包含多个残差块的 CNN 网络构建入

侵检测模型,使用自适应温度进行训练;用裁剪隐层

数量的方式获得学生网络。
(3)使用在线学习和对比学习结合的方法获得

合格的学生网络。
通过数值仿真实验证明,本文所提方法在参数

量仅为原深度模型 6%的情况下,实现了学生网络

在 NSL-KDD 数据集上保持 92%准确性和 98%召回

率的性能,可以满足边缘端低功耗设备的部署要求。
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