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Vehicle tail light signal detection based on YOLOv5s lightweight improvement
ZHU Lei, OUYANG Wangi, AO Siming

( College of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China)

Abstract: In order to accurately detect vehicle tail light signals and realize model lightweight, an improved lightweight YOLOvSs
network model is proposed. Firstly, the lightweight EfficientNet network is used to replace the original backbone network, then the
VoV-GSCSP module is used to replace the C3 module in the neck network, and the NAM attention mechanism is added after the
VoV-GSCSP module. In view of the above three improvements, ablation test is used to verify the optimization effect of the model,
and the VLS data set dedicated to vehicle tail light signal detection is used for model training. The experimental results show that
compared with the original YOLOvVS5s, the number of parameters, calculation amount and model file size of the improved lightweight
model are reduced by 41%, 50% and 39%. Meanwhile, the average accuracy (mAP@ 0. 5) is increased by 0. 9%, which proves
that the improved model has better tail light signal detection performance.
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FENEEE i ZH i Parameters/x 10°M T GFLOPs PR RIYE mAP@O0.5/% AR/ MB
1 YOLOv5s 7.04 16.0 9.1 14.5
2 YOLOv5s+D 4.88 10. 1 92.4 10.3
3 YOLOv5s+@) 7.19 14.3 9.6 14.9
4 YOLOv5s+@®) 7.03 15.8 92.6 14.5
5 YOLOv5s+@D@ 4.14 7.9 9.5 8.8
6 YOLOv5s+D®) 4.88 10. 1 9.8 10.3
7 YOLOvSs+@@®) 7.56 15.0 92.8 15.6
8 YOLOv5s+DQ®) 4.15 7.9 93.0 8.8
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