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基于 YOLOv5s 轻量化改进的车尾灯语检测
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摘　 要:
 

为准确检测车辆尾灯灯语,实现模型轻量化,提出一种轻量化改进 YOLOv5s 网络模型。 首先利用轻量级 EfficientNet
网络替换原主干网络,再将 VoV-GSCSP 模块替换颈部网络内 C3 模块,并在 VoV-GSCSP 模块后添加 NAM 注意力机制。 针

对上述 3 处改进,采用消融试验验证模型优化效果,模型训练采用车辆尾灯灯语检测专用的 VLS 数据集。 实验结果表明,轻
量化改进后模型相较于原 YOLOv5s,参数量减少了 41%、计算量减少了 50%以及模型文件大小减少了 39%,同时平均准确率

精度(mAP@ 0. 5)增加 0. 9%,证明改进后模型具有较好车辆尾灯灯语检测性能。
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Abstract:
 

In
 

order
 

to
 

accurately
 

detect
 

vehicle
 

tail
 

light
 

signals
 

and
 

realize
 

model
 

lightweight,
 

an
 

improved
 

lightweight
 

YOLOv5s
 

network
 

model
 

is
 

proposed.
 

Firstly,
 

the
 

lightweight
 

EfficientNet
 

network
 

is
 

used
 

to
 

replace
 

the
 

original
 

backbone
 

network,
 

then
 

the
 

VoV-GSCSP
 

module
 

is
 

used
 

to
 

replace
 

the
 

C3
 

module
 

in
 

the
 

neck
 

network,
 

and
 

the
 

NAM
 

attention
 

mechanism
 

is
 

added
 

after
 

the
 

VoV-GSCSP
 

module.
 

In
 

view
 

of
 

the
 

above
 

three
 

improvements,
 

ablation
 

test
 

is
 

used
 

to
 

verify
 

the
 

optimization
 

effect
 

of
 

the
 

model,
 

and
 

the
 

VLS
 

data
 

set
 

dedicated
 

to
 

vehicle
 

tail
 

light
 

signal
 

detection
 

is
 

used
 

for
 

model
 

training.
 

The
 

experimental
 

results
 

show
 

that
 

compared
 

with
 

the
 

original
 

YOLOv5s,
 

the
 

number
 

of
 

parameters,
 

calculation
 

amount
 

and
 

model
 

file
 

size
 

of
 

the
 

improved
 

lightweight
 

model
 

are
 

reduced
 

by
 

41%,
 

50%
 

and
 

39%.
 

Meanwhile,
 

the
 

average
 

accuracy
 

(mAP@ 0. 5)
 

is
 

increased
 

by
 

0. 9%,
 

which
 

proves
 

that
 

the
 

improved
 

model
 

has
 

better
 

tail
 

light
 

signal
 

detection
 

performance.
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0　 引　 言

车辆尾灯灯语可表达车辆的行驶状态、行车意

图等有用信息,因此研究如何快速准确检测识别到

前方各台车辆的尾灯灯语具有重要意义。 当前对于

车辆尾灯灯语检测的研究包括以下 3 类方法。 第一

类是针对车灯的颜色特征,用传统方法检测。 田强

等学者[1] 提出参数优化的最小二乘支持向量机

(LS-SVM)对尾灯状态进行分类,结合状态历史信

息判断灯语。 Cui 等学者[2] 先用可变形部件模型检

测车辆后采取 HSV 对尾灯配对,再用稀疏字典学习

方法对灯语分类。 Wang 等学者[3] 用高动态范围

(HDR)相机分别在亮通道和暗通道进行车辆检测

和信号灯灯语识别。 第二类是基于深度学习的方

法。 Chang 等学者[4] 提出基于 YOLOv4 并结合高级

语义和低级特征的前车尾灯检测算法,利用 BiFPN
模型进行多尺度特征融合来提高检测精度。 Song
等学者[5]在车辆检测基础上提出动作状态联合学

习的方法,应用 CNN-LSTM 模型同时识别刹车灯和

转向灯信号的动作特征。 Tong 等学者[6] 基于

YOLOv4-tiny 采用空间金字塔池快速( SPPF) 模块

和利用路径聚合网络(PANet)构建具有特征链接的

特征金字塔,大大提高了检测精度。 Zhang 等学

者[7]在 YOLOv5s 骨干网络插入 CA 注意力机制,利



用 EIoU-Loss 和 EIoU-NMS 来解决类不平衡以及锚

盒误差抑制,改进后模型 mAP@ 0. 5 提高了 9. 2%。
第三类则是结合前 2 种方法的检测方法。 Nava 等

学者[8]结合车道检测算法和 YOLO 模型检测到车

辆后使用 SVM 识别刹车灯。 Shi 等学者[9] 采用

YOLOv4 检测车辆后,再基于自适应阈值的 HSV 空

间分割出尾灯,最后建立深度神经网络模型对数据

训练,根据像素信息对灯语分类。
以上方法虽然在检测精度方面有所提升,但是

在模型的轻量化方面仍存在不足,体现在不易于部

署在车载设备当中,本文针对以上问题在 YOLOv5s
模型基础上进行了优化:

(1)用 EfficientNet[10]轻量化网络替换原模型主

干网络,减少模型参数和计算量。
(2)颈部网络内 C3 模块改为 VoV-GSCSP [11] ,

进一步轻量化模型。
(3) 在 VoV - GSCSP 后添加 NAM 注意力机

制[12]提升检测精度。

1　 YOLOv5s 网络简介

YOLO 系列以其优异的识别精度和速度成为车

辆检测中被广泛应用的目标检测算法,其中较为成

熟的 YOLOv5 为本文首要选择的目标检测模型。 在

YOLOv5 中包含 5 个具有不同特征图深度和宽度的

模型,但结构均相同,分别是 YOLOv5n、YOLOv5s、
YOLOv5m、YOLOv5l 和 YOLOv5x。 YOLOv5x 模型识

别精度高,但计算损失大,无法满足检测实时性要

求,YOLOv5n 模型参数量少, 但模型精度较差。
YOLOv5s 同时具备两者优点,故作为本文所用的基

础模型,其网络结构如图 1 所示。
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图 1　 YOLOv5s网络结构图

Fig.
 

1　 Network
 

structure
 

of
 

YOLOv5s
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　 　 图 1 模型结构由 3 部分组成,可分为主干网络

( Backbone )、 颈 部 网 络 ( Neck ) 以 及 头 部 网 络

(Head)。 主干网络提取图像特征信息;颈部网络将

经过自上而下和自下而上的特征提取过后进行相应

融合,凸显 Backbone 所提取的特征,提高模型鲁棒

性;头部网络获取网络的输出,通过非极大值抑制来

筛选多目标框,将置信度最高的作为输出结果。

2　 模型轻量化改进

2. 1　 EfficientNet 网络

Tan 等学者[10] 在 2019 年基于对轻量化卷积神

经网络的研究提出 EfficientNet 网络,可提高模型特

征提取能力,避免梯度消失以及减少计算量,相比于

现有的轻量级网络,其在平衡训练时间和精度方面

更具优势。
深度学习架构旨在用更简单的网络结构,展示出

更高效的性能。 与其他先进的模型不同,EfficientNet
网络在缩小模型的同时,通过均匀地缩放深度、宽度

和分辨率来获得更有效的结果,该网络结构分为 B0~
B8 共 9 个版本,模型参数量随版本上升而增加。 出

于轻量化考量,因 B0 参数量最少,故本文选用

EfficientNet-B0 替换 YOLOv5s 的 BackBone 以提升模

型运行速度,EfficientNet-B0 网络结构见表 1。
表 1　 EfficientNet-B0 结构

Table
 

1　 EfficientNet-B0
 

structure

阶段 层名 分辨率 通道数 层数

1 Conv3×3 224×224 32 1

2 MBConv1, k3 × 3 112×112 16 1

3 MBConv6, k3 × 3 112×112 24 2

4 MBConv6, k5 × 5 56×56 40 2

5 MBConv6, k3 × 3 28×28 80 3

6 MBConv6, k5 × 5 28×28 112 2

7 MBConv6, k5 × 5 14×14 192 4

8 MBConv6, k3 × 3 7×7 320 1

9 Conv1×1& 池化 & 全连接 7×7 1
 

280 1

　 　 由表 1 可知,EfficientNet 网络主要模块是倒置

瓶颈 MBConv[10] ,引入深度可分离卷积层,与传统层

相比,可大大减少计算量,增加卷积层感受野,提升

特征提取能力。 其结构由 2 个 Conv
 

1 × 1、 1 个

Depthwise
 

k × k (有 3×3 和 5×5 两种)、压缩-激励

(SE)模块和 Dropout 层组成,其中前后 2 个 Conv
 

1×
1 为网络进行升维和降维,SE 作为通道注意模块,
其作用包括压缩和激励,否定信息更少的特征通道。
MBConv 的具体结构如图 2 所示。
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Conv
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BN
Swish

BN
Swish输入

特征图
SE

Conv
1?1,s1

BN
Dropout 输出
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图 2　 MBConv 模块结构

Fig.
 

2　 Structure
 

of
 

the
 

MBConv
 

module

2. 2　 VoV-GSCSP 模块

VoV-GSCSP 模块最初和 GSConv[11] 相结合在

Slim-neck 结构[11] 中实现减小中间层通道数,进而

起到参数量减少的作用, 但在实际训练中发现

GSConv 代替 Conv 后存在模型检测精度降低的情

况,而在单独使用 VoV-GSCSP 后未出现检测精度

降低,故本文引入了 VoV-GSCSP 模块替换颈部网

络内 C3 模块,其结构如图 3 所示。
　 　 VoV - GSCSP 模 块 由 多 个 卷 积 滤 波 器 和

GSbottleneck 构成,其将前后层的特征图进行拼接再

卷积,此操作有效避免残差块中出现信息丢失和梯

度消失问题。 GSbottleneck 结构类似于残差结构,区
别在于主路的卷积层被 GSConv 代替,GSConv 具体

结构如图 4 所示。 首先将输入进行 1×1 卷积核滤

波,再将输出进行深度可分离卷积,下一步将深度可

分离卷积与 1×1 卷积的输出沿通道数融合特征信

息,最后通过 Shuffle 重组输出特征结果。 相较于传

统 3×3 卷积核,GSConv 不仅降低了参数量,还提升

了检测效率。 综上所述,用 VoV -GSCSP 模块替换

颈部网络中的 C3 模块,既可保证模型检测精度,而
且进一步降低模型参数和计算量。

VoV-
GSCSP

Output
C2Channels

C1Channels

Input

C1Channels

Input

C1/2Channels

C2/2Channels

C2Channels
GS

bottleneck
Output

C2Channels

图 3　 VoV-GSCSP 模块结构

Fig.
 

3　 Structure
 

of
 

the
 

VoV-GSCSP
 

module
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图 4　 GSConv 结构

Fig.
 

4　 GSConv
 

structure

2. 3　 NAM 注意力机制

注意力机制因有利于神经网络在通道和空间中

抑制不太突出的特征,而被广泛应用于目标检测网

络。 许多研究集中在如何通过注意力机制算子获取

显著特征上,如 CBAM 注意力机制[13] 、SE 注意力机

制[14]等,这些方法利用了不同维度特征的相互信

息,却忽略了通过训练模型调整权重信息。 NAM 注

意力机制则利用训练模型权值的方差来度量显著特

征,利用权重贡献因子增强注意效果,同时使用批处

理归一化比例因子和标准差表现权重重要性,如此

可避免添加多余的全连接层和卷积层。
NAM 通过矩阵乘法和元素操作计算通道和空

间的注意力权重,然后将其特征映射。 通过在批处

理归一化中计算缩放因子,反映出每个通道变化的

大小,通道变化越剧烈,其提供的信息按比例更丰

富,比例系数越大。 对通道注意子模块使用批归一

化中的比例因子,计算公式如下:

Bout = BN(B in) = γ
B in -μw

　
σ2

w + 􀆠
+ β (1)

　 　 其中, μω 和σω 分别表示小批次样本
 

ω 的均值

和标准差; γ 和 β 分别表示可训练的仿射变换参数。
比例因子衡量通道的方差以表示通道的重要

性,在模型训练过程中方差越大表示通道中包含的

特征信息越丰富,说明该区域更值得被关注。
　 　 通道注意子模块如图 5 所示。 研究推得的公式

如下:
Mc = Sigmoid(Wγ(BN(F1))) (2)

　 　 其中 ,Mc 表示输出特征; γ 表示各通道的标度

因子; Wγ 表示权重。 进一步推得公式如下:
Wγ =γi / ∑

j = 0
γ j

　 　 NAM 用空间维度应用缩放因子 BN 来衡量像

素的重要性,称为像素归一化。 对应的空间注意模

块如图 6 所示。 对此计算过程可以表示为:

Wλ =λ i / ∑
j = 0

λ j

Ms = Sigmoid(Wλ(BNs(F1)))
(3)

　 　 其中, Ms 表示输出, λ 表示比例因子。
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图 5　 通道注意子模块

Fig.
 

5　 Channel
 

Attention
 

Module

Inputfeatures
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图 6　 空间注意子模块

Fig.
 

6　 Spatial
 

Attention
 

Module

　 　 为了抑制不太显著的权重,其在损失函数中加

入了一个正则化项,具体公式如下:

Loss = ∑
(x,y)

l( f(x,W),
 

y) + p∑g(γ) + p∑g(λ)

(4)
　 　 其中, x 表示输入; y 表示输出; W 表示网络权

值; l(·) 表示损失函数; g(·) 表示 l1 范数惩罚函

数; p 表示平衡 g(γ) 和 g(λ) 的惩罚。
综上所述,一方面,NAM 注意力机制可有效减

少跨维度交互的信息损失和放大全局跨维度交互;
另一方面,鉴于其轻量和高效等特性,本文在 VoV-
GSCSP 模块替换掉颈部网络中 C3 模块的同时又在

每一层 VoV - GSCSP 模块后添加 NAM。 网络中

NAM 注意力机制主要通过关注待检测车辆尾部灯

语的重要特征来获取更多信息,将有限的信息分配

到更重要的部分,在增加少量参数的同时提高检测

精度。
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3　 实验与结果分析

3. 1　 数据集来源

当前车辆尾灯灯语检测的数据集较少,大部分

常用公开交通道路数据集均针对车辆、行人、交通信

号灯、交通指示牌等目标,如需检测车辆尾灯灯语还

需人工手动标注符合要求的灯语图像,存在较大工

作量。 在 2022 年 Lai 等学者[15] 为实现道路车辆尾

灯状态检测提出了 VLS(Vehicle
 

Tail
 

Light
 

Signal)数
据集,以后车视角在白天黑夜一共采集了 7

 

720 张

不同道路场景下具备车辆尾灯状态的照片,依据不

同的车辆尾部状态将灯语分为了 8 个类别,分别是:
白天无车尾灯信号( day-no)、白天刹车信号( day-
on)、白天右转信号 ( day - right)、 白天左转信号

(day-left)、夜间无车尾灯信号( night-no)、夜间刹

车信号( night-on)、夜间右转信号( night-right)、夜
间左转信号(night-left)。 由于该数据集符合本文实

验的要求,故将 VLS 数据集按 9 ∶ 1 的比例划分为

训练集共 6
 

948 张和验证集共 772 张。
3. 2　 实验环境与参数设置

本次实验所使用的环境配置见表 2。 模型训练

参数设置如下:训练轮数( epoch)设为 150;批处理

参数(Batch
 

Size)设为 100;转载数据时 CPU 需用线

程数( Workers) 设为 64;输入图像大小设为 640 ×
640;实验需用到 2 个显卡, 故在 device 中设置

“default = ‘0,1’”;学习率为 0. 01;weights 为模型自

训练权重;数据增强参数采用 hyp. scrach-low. yaml,
其中由于图像的左右翻转会混淆数据集中左右转向

灯灯语的标签定义,故将代表图像左右翻转的 fliplr
设置为 0。

表 2　 实验环境配置表

Table
 

2　 Experimental
 

environment
 

configuration
 

table

名称 型号

CPU Intel(R)Xeon(R)Platinum
 

88352V
 

CPU
 

@ 2. 10
 

GHz

内存 180
 

GB(90
 

GB×2)

显卡 RTX
 

4090
 

24
 

G( ×2)

操作系统 Ubuntu20. 04

编程语言 Python
 

3. 8

深度学习框架 PyTorth
 

1. 11. 0

3. 3　 模型评价指标

本文针对 YOLOv5s 进行了轻量化改进,对模型

的评价指标具体如下:即平均准确率均值 mAP@ 0. 5
(mean

 

Average
 

Precision)、参数量( Parameters)、计
算量(GFLOPS)和模型文件大小。

(1)mAP@ 0. 5。 代表模型检测性能,其值越大

代表模型检测效果越好,推得的公式具体如下;
 

mAP = 1
n ∑

n

i = 1
AP i (5)

　 　 其中,平均精度(AP)可由下式计算求得:

AP =∫1

0
P(R)dR (6)

　 　 其中, P、R 分别表示目标检测模型的一般评价

指标:测准率( Precision)和召回率( Recall),其数学

定义公式见如下:

Precision = TP
TP + FP

(7)

Recall = TP
TP + FN

(8)

　 　 其中,TP、FN、FP 表示依据实验结果样本所划

分类的数量,其在分类结果混淆矩阵详见表 3。
表 3　 分类结果混淆矩阵

Table
 

3　 Confusion
 

matrix
 

of
 

classification
 

results

真实情况
模型预测结果

正例 反例

正例 真正例(TP) 假反例(FN)

反例 假正例(FP) 真反例(TN)

　 　 (2) Parameter。 表示模型参数量大小,其数值

影响模型内存占用、初始化快慢及模型文件大小。
(3)

 

GFLOPS。 是以 10 秒亿次为单位来计算的

浮点运算数,其计算量的大小关乎硬件设备所需算

力,GFOLPS 越高、算力要求越高;模型文件所占内

存大小,单位为 MB,内存越小、对硬件磁盘空间要

求更低。
3. 4　 轻量化模型消融试验及分析

根据本文 2 节中 3 处对模型的轻量化改进方法

进行消融试验,最后依照各类评价指标来对各个方

法改进前后模型轻量化的效果加以验证。 实验过程

是依次把 EfficientNet 网络、 VoV - GSCSP 模块及

NAM 注意力机制在 YOLOv5s 原网络上进行添加改

进,并按顺序以及组合改进来进行试验。 轻量化模

型消融试验结果见表 4。 表 4 中替换主干网络

EfficientNet 定义为“ ①”,将颈部 C3 替换成 VoV -
GSCSP 定义为“ ②”,将添加 NAM 注意力机制定义

为“③”。
在表 4 模型消融试验结果中,表明了各轻量化改

进后模型指标变化细节以及各项指标数据对比。 从

前 4 组试验可以看出,EfficientNet 在替换 YOLOv5s
的主干网络后其模型参数量、计算量、文件所占内存

06 智　 能　 计　 算　 机　 与　 应　 用　 　 　 　 　
 

　
 

　 　
 

　
 

　 　 　 　 　 第 15 卷　



明显下降的同时,平均准确率均值仍稍有提高;在试

验 5、6、7 中进一步体现了轻量化组合改进方法在各

项评价指标中的优异性,EfficientNet 替换主干网络和

VoV-GSCSP 替换颈部 C3 能够大幅减少原模型的参

数量、计算量和内存;轻量化的 NAM 注意力机制则侧

重于提升 mAP;将第 8 组实验结果相较于其他,可发

现本文所提改进方法使得模型检测效果达到最优,对
比 YOLOv5s 原模型其参数量减少了 2. 89 × 106

 

M,
GFLOPs 计算量减少了 8. 1,模型内存减少 5. 7

 

MB,同
时平均准确率均值 mAP(@ 0. 5%)也提高了 0. 9%。

表 4　 轻量化模型消融试验结果

Table
 

4　 Ablation
 

results
 

of
 

lightweight
 

model

试验组数 模型 参数量 Parameters / ×106 M 计算量 GFLOPs 平均准确率均值 mAP@ 0. 5 / % 模型大小 / MB

1 YOLOv5s 7. 04 16. 0 92. 1 14. 5

2 YOLOv5s+① 4. 88 10. 1 92. 4 10. 3

3 YOLOv5s+② 7. 19 14. 3 92. 6 14. 9

4 YOLOv5s+③ 7. 03 15. 8 92. 6 14. 5

5 YOLOv5s+①② 4. 14 7. 9 92. 5 8. 8

6 YOLOv5s+①③ 4. 88 10. 1 92. 8 10. 3

7 YOLOv5s+②③ 7. 56 15. 0 92. 8 15. 6

8 YOLOv5s+①②③ 4. 15 7. 9 93. 0 8. 8

3. 5　 训练结果与分析

3. 5. 1　 P - R 曲线

本文的 P - R 曲线图同时将 8 个不同车辆尾灯

灯语检测类别以各自的召回率( Recall) 作为横坐

标,精准率(Precision)作为纵坐标绘制,同时 P - R
图的右上角展示出了 8 类车尾灯语标签分别对应的

mAP@ 0. 5 值,如图 7 所示。 模型改进前后的各类

mAP@ 0. 5 值变化如下:day-no( +1%)、day -brake
( -0. 2%)、day-left(

 

-0. 2%)、day-rigth( +1. 8%)、
night-no( +0. 7%)、night-brake( +0. 7%)、night-left
( +3. 3%)、night-right( +0%)、all

 

classes( +0. 9%)。

day-no 0.865
day-brake 0.943
day-left 0.976
day-right 0.915
night-no 0.930
night-brake0.911
night-left 0.896
night-right0.932
allclasses 0.921mAP@0.5
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Recall
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n day-no 0.875

day-brake0.941
day-left 0.974
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night-brake0.917
night-left 0.929
night-right0.932
allclasses 0.930mAP@0.5
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0.2

0
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Recall

　 (a)
 

改进前　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 (b)
 

改进后

图 7　 模型改进前后 P-R 曲线图

Fig.
 

7　 P-R
 

curves
 

before
 

and
 

after
 

model
 

improvement

3. 5. 2　 评价指标图

轻量化改进模型训练后各项评价指标以及各类

损失函数随迭代变化曲线如图 8 所示,实验证明,训
练集和验证集的位置损失函数( box_loss)、目标损

失函数(obj_loss)以及类别损失( cls_loss)值越小分

别代表标定框大小、目标检测和分类越准,且图 8 中

损失函数曲线均平滑下降,各类验证损失函数均达

到最优拟合结果。 在模型训练 150 次后,
 

Precision

和 Recall 趋于稳定,mAP@ 0. 5 维持在 0. 93,说明改

进后模型具有较好的拟合性能和较为准确的检测能

力。
3. 5. 3　 模型检测结果图

将轻量化改进后模型所训练出来的 best 模型

用在测试集中进行测试,得到的部分检测结果如图

9 所示。 实验表明,模型能较为准确地对灯语进行

检测。
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图 8　 模型各项评价指标图

Fig.
 

8　 Evaluation
 

indicators
 

of
 

the
 

model

图 9　 模型检测部分结果图

Fig.
 

9　 Model
 

testing
 

partial
 

results
 

graph

4　 结束语

本文针对交通道路场景下的车辆尾灯灯语的检

测问题,提出了一种轻量化改进的 YOLOv5s 模型,
在标记了 8 种灯语类别的 VLS 数据集上训练了模

型。 该模型在 YOLOv5s 网络结构上进行了 3 处改

进,分别是用 EfficientNet 网络替换了原主干网络大

幅降低模型的参数量、计算量和内存;将颈部网络内

C3 模块用 VoV-GSCSP 模块替换,进一步轻量化模

型;在每个 VoV-GSCSP 模块后增加轻量且高效的

NAM 注意力机制,增加模型检测准确性。 模型消融

实验表明,相较于原 YOLOv5s,参数量减少 41%,计
算量减少 50%以及模型文件内存减少 39%,同时平

均准确率精度(mAP@ 0. 5)增加 0. 9%。 综上所述,
本文所提模型对于车辆尾灯灯语检测具有实际应用

意义。
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