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Abstract: Due to the prevalence of occlusions and small targets in road traffic scenarios, there is a high propensity for false
detections and omissions. Consequently, the paper proposes an enhanced object detection model based on RT-DETR. In the realm
of feature extraction, the proposed model employs a ResNet—18 framework augmented with a Shuffle Attention (SA) mechanism,
bolstering its feature extraction capacity. Additionally, the research integrates a Cascaded Group Attention (CGA) mechanism,
substituting the Multi —Head Self — Attention ( MHSA) within the original model’s Attention Intra—Feature Interactions ( AIFI)
module, thereby significantly reducing computational redundancy and enhancing model performance. Experiments are conducted
using a dataset specifically designed for road traffic scenes. The model’s performance is validated on an RTX4070ti GPU platform.
Performance evaluation reveals that the improved model achieves a mean Average Precision ( mAP) of 72. 9%, marking a 2. 1%
increase compared to the original RT-DETR model. Moreover, in terms of Frames Per Second (FPS), the enhanced model reaches
132.1 FPS, surpassing RT-DETR by 9 frames and YOLOv8m by 23 frames. The comprehensive experimental results demonstrate
that the proposed improved model not only maintains high detection accuracy, but also significantly accelerates model computation.
These advancements hold significant practical value for real-time and precise object detection in road traffic scenarios, leveraging the
capabilities of deep learning in object detection.
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Table 1 Model comparison on self—built datasets

Model Input mAP/ % BRI/ NMB B8 /M FPS/(f-s™")
FasterRCNN-r18 7681344 77.3 221.0 28.6 42.3
YOLOv5m 768x 1344 64.9 40.1 20.9 70. 1
YOLOv8m 640x640 68. 1 52.0 25.9 108.3
RT-DETR-r18 640x640 70.8 38.5 20. 1 121.6
RT-DETR-r18-SA-CGA  640x640 72.9 38.3 19.7 131.0
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Table 2 Ablation experiment
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