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摘　 要:
 

由于道路交通场景存在许多遮挡和小目标物体,很容易出现误检测和漏检,因此提出一种基于 RT-DETR 的改进目

标检测模型来提升检测性能。 在特征提取网络方面,采用经过 Shuffle
 

Attention(SA)注意力机制增强的 ResNet-18,用来加强

网络特征提取能力;同时引入 Cascaded
 

Group
 

Attention(CGA)机制替换原模型尺度内特征交互(AIFI)模块中的多头自注意

力机制(MHSA),成功减少计算冗余,提升了模型性能。 最后,构建专门针对道路交通场景的数据集进行实验。 模型在

RTX4070ti
 

GPU 平台上进行了性能验证。 性能评估表明,改进后的模型在平均精度(mAP)上达到 72. 9%,较原 RT-DETR 模

型提升 2. 1%。 此外,在每秒帧数(FPS)方面,改进模型同样表现出色、达到 132. 1,优于 RT-DETR
 

9 帧和 YOLOv8m
 

23 帧。
综合实验结果显示,本研究提出的改进模型不仅保持了高检测精度,还成功地加速了模型计算。 这些改进对于实时且精确处

理道路交通场景的目标检测具有重要的实用价值。
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Abstract:
 

Due
 

to
 

the
 

prevalence
 

of
 

occlusions
 

and
 

small
 

targets
 

in
 

road
 

traffic
 

scenarios,
 

there
 

is
 

a
 

high
 

propensity
 

for
 

false
 

detections
 

and
 

omissions.
 

Consequently,
 

the
 

paper
 

proposes
 

an
 

enhanced
 

object
 

detection
 

model
 

based
 

on
 

RT-DETR.
 

In
 

the
 

realm
 

of
 

feature
 

extraction,
 

the
 

proposed
 

model
 

employs
 

a
 

ResNet-18
 

framework
 

augmented
 

with
 

a
 

Shuffle
 

Attention
 

(SA)
 

mechanism,
 

bolstering
 

its
 

feature
 

extraction
 

capacity.
 

Additionally,
 

the
 

research
 

integrates
 

a
 

Cascaded
 

Group
 

Attention
 

(CGA)
 

mechanism,
 

substituting
 

the
 

Multi-Head
 

Self-Attention
 

(MHSA)
 

within
 

the
 

original
 

model′ s
 

Attention
 

Intra -Feature
 

Interactions
 

(AIFI)
 

module,
 

thereby
 

significantly
 

reducing
 

computational
 

redundancy
 

and
 

enhancing
 

model
 

performance.
 

Experiments
 

are
 

conducted
 

using
 

a
 

dataset
 

specifically
 

designed
 

for
 

road
 

traffic
 

scenes.
 

The
 

model′s
 

performance
 

is
 

validated
 

on
 

an
 

RTX4070ti
 

GPU
 

platform.
 

Performance
 

evaluation
 

reveals
 

that
 

the
 

improved
 

model
 

achieves
 

a
 

mean
 

Average
 

Precision
 

(mAP)
 

of
 

72. 9%,
 

marking
 

a
 

2. 1%
 

increase
 

compared
 

to
 

the
 

original
 

RT-DETR
 

model.
 

Moreover,
 

in
 

terms
 

of
 

Frames
 

Per
 

Second
 

(FPS),
 

the
 

enhanced
 

model
 

reaches
 

132. 1
 

FPS,
 

surpassing
 

RT-DETR
 

by
 

9
 

frames
 

and
 

YOLOv8m
 

by
 

23
 

frames.
 

The
 

comprehensive
 

experimental
 

results
 

demonstrate
 

that
 

the
 

proposed
 

improved
 

model
 

not
 

only
 

maintains
 

high
 

detection
 

accuracy,
 

but
 

also
 

significantly
 

accelerates
 

model
 

computation.
 

These
 

advancements
 

hold
 

significant
 

practical
 

value
 

for
 

real-time
 

and
 

precise
 

object
 

detection
 

in
 

road
 

traffic
 

scenarios,
 

leveraging
 

the
 

capabilities
 

of
 

deep
 

learning
 

in
 

object
 

detection.
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0　 引　 言

随着经济发展和社会进步,自动驾驶和智慧交

通技术的研究与发展受到广泛的关注。 实时且准确

的目标检测是自动驾驶和智慧交通系统的重要组成

部分,但是实际道路情况是复杂多变的,对目标检测

算法提出了更高的挑战。
近年来,目标检测作为计算机视觉的基础任务一



直备受业界瞩目。 在深度学习领域,以卷积神经网络

(CNN)和 Transformer[1]为基础的方法自问世以来就引

发关注,已经成为目标检测领域的主流技术路径。 基

于 CNN 的经典检测器方案是使用卷积神经网络作为

特征提取 Backbone,然后使用手工组件 Anchor-Base
(Fast

 

R-CNN[2] 、Faster
 

R-CNN[3] 、YOLOv1~ v7[4-8]等)
或者 Anchor-Free(YOLOv8,FCOS[9] ,

 

YOLOX[10]等)加
上非极大值抑制(NMS)来筛选最终的候选框。 然而

Anchor-Base
 

或
 

Anchor-Free
 

的 2 种方案都利用非最

大抑制进行后处理,这给经典检测器带来了推理性能

的瓶颈。 此外,由于非极大值抑制不使用图像信息,因
此在边界框保留和删除中容易出错。 近年来,
Transformer 已广泛应用到计算机视觉的物体分类领

域,例如
 

Vision
 

Transformer[11] 、Swin
 

Transformer[12]
 

等。
Transformer

 

用在目标检测领域的开山之作:DETR[13]
 

(DEtection
 

TRansformer),消除了传统检测流程中的

Anchor 和非极大值抑制(NMS)组件,通过二分匹配直

接预测检测对象,简化了检测流程。 尽管 DETR 具有

显著优势,但其存在训练收敛慢和查询优化难的问题。
为解决这些问题,出现了多个变体,如 Deformable -
DETR[14]通过提高注意力机制的效率来加速训练收敛,
DAB-DETR[15] 引入了 4D 参考点以优化预测框,而
DINO[16]在此基础上取得了较为先进的成果;RT -
DETR[17]则是解决了标准 DETR 模型的高计算成本问

题。 无论是基于 CNN、还是基于 Transformer 的模型,都
在不断演化以应对日益复杂和动态的视觉场景。 然

而,道路交通场景还存在许多密集遮挡目标和小目标

导致的误检、漏检问题[18] ,影响模型检测性能。
为了能够将现有更高效的目标检测模型应用在

道路交通场景,常用的改进方法有:使用更强的模型

特征提取网络、添加小目标检测头、引入注意力机

制、改变特征融合方式等。 盛博莹等学者[19] 以

YOLOv5s 为基础框架,使用反馈机制的特征提取网

络 RFP-PAN,以提高小目标检测精度。 冉险生等

学者[20]通过改进网络特征融合的方式提升了检测

过程中密集遮挡目标、小尺度目标出现的漏检和误

检问题,但是模型结构复杂,不利于实时场景。 李轩

等学者[21] 为了解决密集目标的遮挡问题,提出了

Occlusion
 

Loss,通过提高预测框和真实框的匹配程

度以使定位更加准确。 李永上等学者[22] 改进回归

损失函数以加快边界框回归速率,并改进非极大抑

制,改善小目标的漏检问题。 以上的改进对传统目

标检测 CNN 模型进行了改进,效果十分显著和有

效。 综合卷积神经网络的优点,将其运用在端到端

的模型,同时加上 DETR 类模型不需要 NMS 组件的

优势,不容易在边界框保留和删除中出错,所以本文

对现有 RT-DETR 模型进行了关键性改进,强化其

在处理实时道路交通场景时的性能。 改进如下:
(1)在特征提取的骨干网络 ResNet - 18 中,加

入 Shuffle
 

Attention 机制,显著增强了模型对关键特

征的提取能力,提升小目标和遮挡目标识别的准确

性。
(2)通过引入 Cascaded

 

Group
 

Attention( CGA)
机制,替换模型的尺度内特征交互 AIFI 模块中

(Encoder)的多头自注意力机制,使 MHSA 能够更加

高效和快速地运行,降低了计算冗余。

1　 RT-DETR 介绍

RT-DETR 由 Lv 等学者[17] 于 2023 年 4 月首次

提出,是一种较新的实时目标检测模型,主要包括:
特征提取骨干网络( Backbone);高效混合编码器

(Hybrid
 

Encoder) 和解码器( Decoder)。 RT -DE 原

始模型结构如图 1 所示。
　 　 骨干网络(Backbone)在检测模型中担当着特征提

取的重要角色,在本次实验中选择了基于 CNN 的

ResNet-18 模型作为核心。 这一选择考虑到 ResNet-18
既具有较低的参数量,又拥有强大的特征提取能力,从
而有效平衡了后续 Transformer 编码器-解码器的参数。
骨干网络的最后 3 个阶段(S3、S4、S5)的输出特征,被
用作后续混合编码器(Hybrid

 

Encoder)的输入。
在高效混合编码器 ( Hybrid

 

Encoder ) 部分,
Lv 等学者[17] 通过分析 Transformer

 

Encoder 的计算

量,解耦了基于 Transformer 的全局特征编码,从而

设计了尺度内特征交互( AIFI)和跨尺度特征融合

模块(CCFM)结合的新的高效混合编码器( Efficient
 

Hybrid
 

Encoder),这在一定程度上类似于经典目标

检测模型中常用的特征金字塔网络( FPN)。 此外,
为了进一步优化计算效率,把 Encoder

 

Layer 的层数

从 6 减小到 1 层。 这样的设计使得模型能更精准地

理解图像中的语义内容,增强多个尺度上的目标定

位能力,从而显著提高目标检测的准确性。
解码器部分使用 IoU 感知查询选择机制,这种

机制从 Encoder 的输出中选出固定数量的 Token 作

为 Decoder 的初始查询。 在解码阶段,这些查询经

过连续迭代优化,有效生成最终的边界框和置信度

分数。 不同于传统目标检测模型,这里无需通过

NMS 进行候选框筛选,实现了真正的端到端目标检

测。
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图 1　 RT-DETR 原始模型

Fig.
 

1　 Original
 

model
 

of
 

RT-DETR

2　 RT-DETR 改进策略

本文的核心改进集中在采用先进的注意力机制,
旨在提升模型的效率和精确度。 首先,在 Backbone 部

分,选择了 ResNet-18[23-25] 网络,因为其具有较低的模

型参数量,有助于整体模型的轻量化。 特别地,在基础

模块中加入了 Shuffle
 

Attention[15] 机制,该机制通过优

化特征提取过程,进一步提升了模型对小目标和遮挡

目标的识别能力。 其次,从 EfficientViT[16] 模型中借鉴

了级联分组注意力(Cascaded
 

Group
 

Attention,CGA)模
块。 这一模块的创新之处在于为每个注意力头提供不

同的输入,有效减少了多头自注意力(MHSA)机制中的

计算冗余。 这种设计不仅提高了计算效率,还增强了

模型在处理复杂场景时的准确性和实时性。
2. 1　 Backbone 的改进

ResNet-18 是一种在深度学习领域广泛应用的

网络架构,属于残差网络(ResNet)系列。 由微软研究

院的 He 等学者[25] 于 2016 年提出,这一架构的设计

初衷是为了解决深度神经网络中的梯度消失问题。
ResNet-18 因其较浅的网络深度和较少的参数而成

为焦点,使其成为计算资源有限环境下的理想选择。
残差模块结构如图 2 所示。
　 　 Shuffle

 

Attention[23]是一种专门针对计算机视觉

设计的注意力机制,主要集中于图像的通道级别特

征。 SA 注意力设计如图 3 所示。 这种机制通过学

习不同通道之间的相互关系,有效地选择并强调图

像特征中的关键信息。 通过引入通道重排加强了不

同特征之间的交互,从而增强了整体网络的表达能

力。 此外,还允许模型自适应地学习和调整通道权

重,使其能更好地适应不同的任务和输入情境。 这

样的设计有效减少了冗余梯度信息的干扰,提高了

模型在目标检测等任务中的性能表现。

Conv3?3,64

Conv3?3,64

ReLU

64d

ReLU

图 2　 残差模块

Fig.
 

2　 Residual
 

module

　 　 Shuffle
 

Attention 的计算过程如下:
首先将输入特征图 X 分为 G 组,每组有 c / g 个

通道,其中 c 是通道数。 对此可以表示为:
X = [X1,X2,X3,…,XG] (1)

　 　 对第 i 个 c / g 特征图拆分为 2 部分: X1 和 X2,
每部分有 c / 2g个通道,对 X1 使用通道注意力, X2 使

用空间注意力机制。 由此得到:
Fca(X1) = σ(FC(AvgPool(X1)))
Fsa(X2)= σ(Conv(Concat(AvgPool(X2),MaxPool(X2))))

(2)
　 　 其中, σ 表示 Sigmoid 函数;FC 表示全连接层;
AvgPool 表示全局平均池化; Conv 表示卷积层;
Concat 表示连接操作。

接下来,将注意力权重应用到相应的通道上,由
此推得:

X′
1 = Fca(X1)·X1 (3)

X′
2 = Fsa(X2)·X2 (4)
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图 3　 SA 注意力

Fig.
 

3　 Shuffle
 

Attention

　 　 随后,将注意力加权的结果在维度上进行重新

融合,最终输出通过将融合后的特征图。
得益 于 SA 注 意 力 的 作 用, 将 其 添 加 在

Backbone 的最后一层。 该层是尺度内特征交互

(AIFI)的输入 S5,这样能够更有效地获取深层次特

征。 改进残差模块结构如图 4 所示。

Conv3?3,64

Conv3?3,64

ShuffleAttn

ReLU

64d

ReLU

图 4　 改进残差模块

Fig.
 

4　 Improved
 

residual
 

module

2. 2　 添加 CGA 模块

级联分组注意力 ( Cascaded
 

Group
 

Attention,
CGA)模块是 EfficientViT[24]模型中的一个核心创新

点,针对 Vision
 

Transformer 模型的计算效率进行了

优化。 CGA 模块的核心思想是在自注意力机制中

引入特征的多样性。 CGA 模型设计如图 5 所示。
与传统的自注意力机制不同,后者使用相同的特征

给所有的 head 进行计算,CGA 为每个 head 提供不

同的输入特征,然后级联这些 head 的输出特征。 这

种方法不仅减少了多头自注意力中的计算冗余,而
且还通过增加网络深度来提高模型的处理容量。 相

较于标准的 MHSA,CGA 模块展现了更高的内存效

率,使其在处理大规模视觉任务时更为高效。
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图 5　 CGA 模块

Fig.
 

5　 Cascaded
 

Group
 

Attention
 

module
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　 　 假设输入特征图为 X, 维度为 H × W × C, 其中

H 和 W 是空间维度, C 是通道数。 将输入特征图平

均分割成 N 个组,每组具有 C / N 个通道,将分割的

通道进行自注意力计算。
对于每个头 headi, 特征图 X i 经过线性变换生

成 key
 

K、 query
 

Q、 value
 

V。 研究推得公式如下:
Ki =WK

i X i (5)
Qi =WQ

i X i (6)
Vi =WV

i X i (7)
　 　 其中, WK

i ,WQ
i ,WV

i 分别表示对应的权重矩阵。
进一步又推得:

Ai = Softmax
QiKT

i
　 dk

( ) (8)

　 　 其中, dk 表示 key 的维度。 研究中沿着 K 的列

来应用 Softmax 函数。
在此基础上,应用自注意力得到特征图 X′

i, 即:
X′

i =AiV (9)
　 　 在后续计算中如果不是第一个 head,则将前一

个 head 的输出与当前 head 的输入进行相加。 具体

公式如下:
Xi =Xi +X′

i -1 (10)
　 　 最后,将所有 head 的输出特征图级联起来,通
过一个线性变换投影回原始通道 C, 由此可得到如

下公式:
X′ = Concat(X′

1,X′
2,…,X′

N) (11)
Output =WPX′ (12)

　 　 其中, WP 表示输出投影的权重矩阵。
最后,输出特征图( Output)是经过级联分组注

意力模块处理后的结果,其维度与输入特征图 X 相

同,可以继续传递到网络的下一层或用于生成最终

的任务特定输出。 通过这种方式,CGA 模块允许不

同 head 捕获不同的特征表示,最终通过级联获得一

个综合的特征表示。
在级联结构中,每个注意力 head 的输出会作为

下一个 head 的输入的一部分。 这种递进式的处理

方式意味着每个 head 不必从头开始处理完整的信

息,而是在前一个 head 的结果基础上进一步提炼和

增强特征,从而节约了计算资源。 级联的方式可能

还会减少需要学习的参数数量。 虽然这不是 CGA
的直接目标,但参数量的减少往往会伴随着计算量

的下降,从而对运算速度有帮助。 在支持并行的计

算设备上,因为每个 head 处理不同的特征组,这些

操作可以并行执行,进一步提高计算效率。
将 CGA 模块引入到 RT-DETR 中,不仅降低了

参数量和模型大小,并且最终的运算速度得到提升,
对需要实时性的视觉 Transformer 模型十分友好。

3　 实验设计与结果分析

3. 1　 数据集与实验环境

为了验证本文方法的有效性,本文在自建的车

载驾驶环境数据集上进行了实验。 该数据集专注于

城市道路环境,通过在汽车驾驶平台中央放置手机

进行视频拍摄来采集数据。 文中所采集的图像具有

1
 

920×1
 

080 像素的分辨率,并以 25 帧 / s 的帧率进

行实验记录。 通过每 7
 

s 抽取一帧的方式构建了车

载驾驶环境数据集,并从中挑选了 1
 

600 张图像进

行详细的数据标注。 数据标注主要涵盖了图片中的

城市道路环境参与者,如各种形式的车辆(vehicle)、
骑行者( rider)和行人( pedestrian)。 为了实验的需

要,将这个数据集按照 7:1:2 的比例分为训练集和

验证集和测试集。 车载驾驶环境数据集样例如图 6
所示。

图 6　 车载驾驶环境数据集样例

Fig.
 

6　 Example
 

of
 

in-vehicle
 

driving
 

environment
 

dataset

　 　 训练环境为:所使用环境操作系统为 Ubuntu
 

20. 04
 

LTS, 计算资源为 CPU
 

i7 - 13700KF,
 

1
 

张
 

NVIDIA
 

RTX
 

4070ti 显卡,深度学习框架为
 

Pytorch
 

1. 13. 1。
训练 时 优 化 器 参 数 设 置 为: 优 化 器 选 用

AdamW,动量设置为
 

0. 9,初始学习率为 0. 000
 

1,关
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闭混合精度训练(amp),共训练
 

300
 

个 epochs。
3. 2　 评价指标

 

本文方法采用平均准确率( Average
 

Precision,
AP)、 mAP ( mean

 

Average
 

Precision)、 FPS ( Frames
 

Per
 

Second)和模型参数量对模型进行评价。
(1)

 

精确率( Precision)。 是指正确预测为正

确(TP)的占全部预测( TP +FP) 的比例,计算公式

为:
 

Precision = TP
TP + FP

(13)

　 　 ( 2) 召回率( Recall)。 是指正确预测为正确

(TP)的占实际
 

(TP+FN)的比例,计算公式为:

Recall = TP
TP + FN

(14)

　 　 (3)AP。 是某个类别的平均精确度。 对于第 i
个类别,选取不同的 IoU 阈值,平均精确度的计算公

式为:

AP =∫1

0
Precisiond(Recall) (15)

　 　 (4)mAP
 

。 n 个类别的平均准确率计算公式如

下:

mAP = 1
n ∑

n

i = 1
AP (16)

　 　 (5) FPS。 是每秒检测图像帧数。 该指标不仅

与模型的参数量相关,还与实验过程中的硬件性能

相关。

4　 实验结果分析

为了验证本文改进的算法检测性能,选取参数量

接近的常用目标检测算法 YOLO 系列和 Faster -
RCNN 进行对比,使用数据集均为自建车载驾驶环境

数据集。 因为本文探讨的是实时性的目标检测算法,
主要评判的是模型在实际检测过程中 FPS。

复杂道路场景实验结果对比如图 7 所示。 模型

在自建数据集上模型对比见表 1。 在不同目标检测

模型的比较中,基于 RT -DETR 的改进模型( RT -
DETR-R18 -SA -CGA) 取得了 72. 9%的平均精度

(mAP),显示了较为优秀的检测性能。 这个结果比

原始 RT-DETR -R18 模型的 71. 8%有所提高。 在

每秒帧数(FPS)方面,改进模型达到了 131. 0
 

FPS,
超过了 FasterRCNN-R18、YOLOv5m 和 YOLOv8m 和

原始 RT-DETR-R18 模型。 消融实验见表 2。 由表

2 可知,对 Baseline、Shuffle
 

Attention( SA)、Cascaded
 

Group
 

Attention(CGA)的使用情况进行了对比。 在

使用 CGA 的实验组中,该模块能有效提高注意力模

块的计算速度,SA 也能够提升检测性能。 从实验结

果可以看出,通过添加 SA 和 CGA 注意力机制,改进

的 RT-DETR 模型在维持较高的检测精度的同时,
还实现了在实时处理方面的性能提升。 这说明了改

进模型在处理动态和复杂的道路交通场景中的有效

性和实用性。

(a)原图

(b)RT-DETR-R18

(c)RT-DETR-R18-SA-CGA

图 7　 复杂道路场景实验结果对比

Fig.
 

7　 Comparison
 

of
 

experimental
 

results
 

of
 

complex
 

road
 

scenes
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表 1　 模型在自建数据集上模型对比

Table
 

1　 Model
 

comparison
 

on
 

self-built
 

datasets

Model Input mAP / % 模型大小 / MB 参数量 / M FPS / ( f·s-1 )

FasterRCNN-r18 768×1344 77. 3 221. 0 28. 6 42. 3

YOLOv5m 768×1344 64. 9 40. 1 20. 9 70. 1

YOLOv8m 640×640 68. 1 52. 0 25. 9 108. 3

RT-DETR-r18 640×640 70. 8 38. 5 20. 1 121. 6

RT-DETR-r18-SA-CGA 640×640 72. 9 38. 3 19. 7 131. 0

表 2　 消融实验

Table
 

2　 Ablation
 

experiment

实验组 Baseline SA CGA 0. 5mAP / % FPS

1 挰 㱛 㱛 71. 8 121. 6

2 挰 挰 㱛 72. 3 121. 3

3 挰 㱛 挰 70. 8 132. 5

4 挰 挰 挰 72. 9 131. 0

5　 结束语

在本文中,通过在 RT-DETR 模型的骨干网络

中添加 Shuffle
 

Attention 机制,显著增强了对图像特

征的捕获,提高了模型检测性能,经过尺度内特征交

互模块的处理,这些信息进一步提升了模型的检测

精度。 此外,通过 Cascaded
 

Group
 

Attention 模块对

Transformer 的计算过程进行优化,有效提高了模型

的检测速率。 在专门设计的道路交通场景数据集上

的性能评估显示,相较于其他模型,改进的 RT -
DETR 模型在准确率和速度上均表现出色,证明了

其在道路交通场景中实时应用的潜力。 然而,由于

RT-DETR-R18 是最小的基线模型,本研究在低成

本硬件或低算力设备上的应用可能会受限,且在不

支持并行处理的设备上性能可能有所下降。 未来的

工作将探索优化模型以提高其在资源受限环境下的

可用性。
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