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Residual adaptive image descriptor
WEI Hong'ao, WEI Benchang

(School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, Hubei, China)

Abstract: In order to solve the problem that the retrieval accuracy of VLAD is affected by the large residual mean value obtained
during the quantization residual calculation in the stage of VLAD online generation, RAVLAD is proposed. In the pre-processing
stage, feature space is divided by K-means algorithm to generate visual code book with two—layer structure. In the stage of
RAVLAD generation, quantized residuals are adaptively generated based on the nearest neighbor visual words in the two-layer code
book to reduce the mean of residuals, and the accumulation of quantized residuals is based on the visual words in the first-layer code
book. Therefore, RAVLAD is represented as the series of residuals cumulative vectors on the visual words in the first—layer code
book. In order to suppress the phenomenon of local feature outburst, the three—step normalization strategy is adopted. The results of
image retrieval experiments on Holidays and UKBench datasets show that RAVLAD has better retrieval performance than VLAD and
many other methods.
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Fig. 1 Schematic diagram of online VLAD generation process
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Table 1 Comparison of retrieval performance in the Holidays
dataset
HRTF K D mAP
Bow! 1! 20 000 20 000 0. 404
VLAD! 415 64 8192 0. 552
SEVLAD!'®] 64 8 256 0. 601
EVLAD!™ 64 8192 0. 607
FVLAD'?!! 64 8192 0.597
CEVLAD % 64 8192 0.572
RAVLAD 64 8192 0.622
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Table 2 Comparison of retrieval performance in the UKBench
dataset
FIRAT K D mAP
Bow " 20 000 20 000 2.87
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RAVLAD 64 8 192 3.37
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