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Hierarchical aggregation personalized federated learning
based on cosine similarity
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Abstract: As a new paradigm of federated learning, personalized federated learning generates an independent personalized model
for each client, which can solve the problem of increasing the performance difference and decreasing the average accuracy of the
global model on each client under the condition of high heterogeneity of client data. In order to improve the performance of the
personalization model, considering the similarity client collaboration to optimize the personalization model, and using the
hierarchical differential aggregation method to optimize the model aggregation, a hierarchical aggregation personalization federated
learning method based on cosine similarity is proposed. In each iteration, the aggregation server generates a personalized aggregation
model for each client by calculating the cosine similarity between the model levels of each client, distinguishing the aggregation
weights of the model levels, and retaining the local personalized model layer when the model is aggregated. Experimental results
show that the proposed method has more than 3. 5% improvement in model accuracy accuracy and high robustness on the
FashionMNIST, CIFARI10 dataset compared with other personalized federated learning methods.
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Fig. 1 Training results graph of different data distributions in

federated learning
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Fig. 2 Flowchart of hierarchical aggregation based on model similarity
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