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Research progress on crop disease and pest detection methods
based on machine learning

GAO Xinyue, LI Yue

(College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China)

Abstract; Crop diseases and insect pests are one of the major agricultural disasters in China, which have caused great losses to
agricultural production and national economy. At present, China’s agricultural pests and diseases have many problems, such as a
wide variety, rapid spread, wide range of influence, and the shortage of professional detection and control personnel in backward
rural areas. This paper first combs the traditional detection methods and traditional machine learning detection methods, and finds
that there is still room for improvement in the detection speed and accuracy ; Furthermore, the application of deep learning techniques
such as AlexNet, VGGNet, GoogLeNet, ResNet, and YOLO in this field was emphasized. This kind of deep learning method has
higher detection speed and accuracy, which provides a more solid technical support for the intelligent detection of crop diseases and
insects.
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Fig. 1 Convolutional neural network structure
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