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Lightweight apple heterogeneous object detection model based on YOLOvS
SHAN Tonghua, LIU Liqun

( College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China)

Abstract; Due to the diversity of the orchard environment and the presence of complex external interference factors such as lighting
conditions, branch obstruction, and overlapping leaves, detecting heterogeneous fruit targets is a highly challenging task. To address
these issues, this paper proposes a lightweight apple heterogeneous target detection model based on YOLOv8, named YoloMN
model. In the target detection part of this model, we introduced a data preprocessing module that can simultaneously process
heterogeneous RGB images and depth images, enhancing feature expression capabilities through the fusion of image features. To
further optimize the model, we improved the backbone network using the MobileNetV3 module and added the NAM Attention
module to the head input part of the model, significantly enhancing the model “s feature extraction and expression capabilities,
thereby strengthening its heterogeneous target detection ability in complex environments. While maintaining the original target
detection accuracy, our model achieves significant optimizations with a 60% reduction in parameter count and a 50% reduction in
model size. In complex environments, our model demonstrates excellent target detection capabilities, and even with a reduced
parameter count, its target detection performance remains outstanding.
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Table 1 Comparison of experimental results data of RD—fuji dataset

TR A% PEIEES MAP50 MAP50-95  BEAEUHEREAERT/ms BEHI KN/ MB
YOLOv3-tiny 0.912 0.892 0.947 0. 665 3.8 23.20
YOLOv4~-tiny 0. 895 0. 898 0.950 0. 665 3.3 14. 80

YOLOv5 0. 909 0. 883 0.945 0. 661 2.7 5.02
YOLOv7~tiny 0.901 0. 900 0. 949 0. 663 4.6 15.70
YOLOvS 0.892 0.891 0.945 0. 668 4.2 5.95
AR S 0.923 0. 857 0. 940 0. 649 3.6 2.53
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Table 2 Comparison of experimental results data of self our dataset
R MR PEREB: MAP50 MAP50-95  FEEUfEHIFENT/ms KRR /)N /MB

YOLOv3~tiny 0.952 0.863 0.944 0.678 3.6 23.20
YOLOv4—tiny 0.926 0.861 0. 940 0. 659 3.5 14. 80

YOLOv5 0.926 0. 848 0.933 0.658 3.1 5.02
YOLOv7~tiny 0.928 0.900 0.963 0.705 4.5 15.70

YOLOv8 0.935 0. 896 0.959 0. 690 3.7 5.95

AR 0. 945 0.913 0. 962 0. 699 4.2 2.55
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Table 3 Comparison of experimental results for object detection of KFuji dataset
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Table 4 Comparison of experimental results for object detection of our dataset
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