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Classification of medical imbalanced data based on
denoising hybrid sampling
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Abstract: Medical imbalanced data is a common type of imbalanced data, for which an improved denoising hybrid sampling
method that integrates the Minimum Covariance Determinant (MCD) algorithm and the Local Outlier Factor ( LOF) algorithm is
proposed. Firstly, the MCD algorithm is utilized to remove global noise by identifying outliers using the Mahalanobis distance.
Subsequently, the LOF algorithm is combined to assess the local abnormality of sample points, revealing their degree of marginality
in the neighborhood. By integrating global anomaly scores with local anomaly scores, weights that reflect the degree of marginality
of the sample points are calculated, providing a basis for hybrid sampling. Weight—based random undersampling and weight—based
SMOTE methods are used for hybrid sampling, which effectively balance the dataset while preserving boundary information, thereby
enhancing the performance of the classifier. Experimental results indicate that this method optimizes the performance of classifiers on
multiple imbalanced datasets, particularly demonstrating excellent effects in terms of G—mean and F1 scores.
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Table 1 Experimental dataset parameters
Klnte R : et per IR
BRte  RHEEC REARHK RS REAK
Pima 8 768 268 500 0.536
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Table 2 Evaluation metrics for different algorithms when using SVM classification

FE/TE S BRI ES'@ 7S SMOTE ADASYN $£TF K-means IS KORAE
Pima PEN S 0.777 78 0.695 74 0.762 39 0.657 09
AR 0. 636 36 0.582 33 0.585 00 0.586 36
G-mean 0.591 11 0.520 37 0.543 78 0.497 70
F11{H 0.700 00 0. 630 80 0.658 94 0.618 06
Heart PENGIE: S 0.714 29 0.630 17 0.634 06 0.638 71
i 0.526 32 0.571 08 0.579 60 0. 469 35
G-mean 0.526 32 0. 464 00 0.443 42 0.411 74
F11{8 0.652 17 0.594 57 0. 600 94 0.537 12
WBCD B % 0.947 37 0.900 00 0.979 17 0. 853 66
AR 0.972 97 0.918 37 0.810 34 0.972 22
G—mean 0.934 90 0.843 75 0.815 97 0.841 96
F11{8 0.960 00 0.909 09 0.886 79 0.909 09
*3 (EABIKRKS EXRAREEHITFENIER
Table 3 Evaluation metrics for different algorithms when using Random Forest
e/ S PO RS ATy SMOTE ADASYN T K-means T RORAE
Pima PENGIE S 0.722 22 0. 636 40 0.709 26 0.758 38
AR 0. 661 02 0.635 23 0.622 37 0.587 25
G-mean 0.577 78 0.504 20 0.547 63 0.541 46
F11{H 0. 690 27 0.633 02 0. 660 06 0.661 36
Heart PENEE S 0.809 52 0. 656 45 0.686 92 0.799 07
iR 0. 680 00 0.717 18 0.709 75 0. 667 47
G—mean 0.639 10 0.570 48 0.575 28 0.627 03
F11{8 0.739 13 0. 680 88 0.690 10 0.719 26
WBCD B % 0.973 68 0.951 22 0.955 56 0.942 31
i 1. 000 00 0.951 22 0.934 78 0.960 78
G—mean 0.973 68 0.925 16 0.914 01 0.911 91
F11{8 0. 986 67 0.951 22 0.945 05 0.951 46
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Table 4 Evaluation metrics for different algorithms when using KNN classification

AR BRAEEE Y ARSIy SMOTE ADASYN HTF K-means I KORAE
Pima PEREE: 0.685 19 0.641 51 0. 660 38 0.672 73
AR 0. 616 67 0.576 27 0.479 45 0. 606 56
G-mean 0.527 59 0.482 72 0.411 92 0.509 64
F1{§ 0.649 12 0.607 14 0.555 56 0.637 93
Heart PE m 0.761 90 0.655 17 0.692 31 0.714 29
iR 0.615 38 0.678 57 0. 642 86 0.576 92
G-mean 0.561 40 0. 458 62 0.482 52 0.507 52
F11{i 0. 680 85 0. 666 67 0. 666 67 0. 638 30
WBCD PEREE: 0.947 37 0. 906 98 0. 940 00 0.886 79
i 1. 000 00 0. 847 83 0.870 37 0.979 17
G-mean 0.947 37 0.817 56 0.837 19 0.872 25
F1{8 0.972 97 0. 876 40 0.903 85 0.930 69
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