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摘　 要:
 

医疗不平衡数据是一类常见的不平衡数据,本文提出了一种基于去噪混合采样的医疗不平衡数据分类方法。 首先,
使用最小协方差行列式(MCD)算法去除全局噪声,通过计算马氏距离来识别异常值;其次,结合局部离群因子(LOF)算法对

样本点进行局部异常性评估,揭示其在邻域中的边界程度;通过综合全局异常分数和局部异常分数,计算得到反映样本点边

界程度的权重,并将其作为混合采样的依据;最后,基于该权重,采用随机欠采样和 SMOTE 方法进行混合采样,有效平衡了数

据集,同时保留了边界信息,提高了分类器的性能。 实验结果表明,该方法在多个不平衡数据集上优化了分类器的性能,特别

是在 G-mean 和 F1 值方面取得了提升。
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Abstract:
 

Medical
 

imbalanced
 

data
 

is
 

a
 

common
 

type
 

of
 

imbalanced
 

data,
 

for
 

which
 

an
 

improved
 

denoising
 

hybrid
 

sampling
 

method
 

that
 

integrates
 

the
 

Minimum
 

Covariance
 

Determinant
 

(MCD)
 

algorithm
 

and
 

the
 

Local
 

Outlier
 

Factor
 

(LOF)
 

algorithm
 

is
 

proposed.
 

Firstly,
 

the
 

MCD
 

algorithm
 

is
 

utilized
 

to
 

remove
 

global
 

noise
 

by
 

identifying
 

outliers
 

using
 

the
 

Mahalanobis
 

distance.
 

Subsequently,
 

the
 

LOF
 

algorithm
 

is
 

combined
 

to
 

assess
 

the
 

local
 

abnormality
 

of
 

sample
 

points,
 

revealing
 

their
 

degree
 

of
 

marginality
 

in
 

the
 

neighborhood.
 

By
 

integrating
 

global
 

anomaly
 

scores
 

with
 

local
 

anomaly
 

scores,
 

weights
 

that
 

reflect
 

the
 

degree
 

of
 

marginality
 

of
 

the
 

sample
 

points
 

are
 

calculated,
 

providing
 

a
 

basis
 

for
 

hybrid
 

sampling.
 

Weight-based
 

random
 

undersampling
 

and
 

weight-based
 

SMOTE
 

methods
 

are
 

used
 

for
 

hybrid
 

sampling,
 

which
 

effectively
 

balance
 

the
 

dataset
 

while
 

preserving
 

boundary
 

information,
 

thereby
 

enhancing
 

the
 

performance
 

of
 

the
 

classifier.
 

Experimental
 

results
 

indicate
 

that
 

this
 

method
 

optimizes
 

the
 

performance
 

of
 

classifiers
 

on
 

multiple
 

imbalanced
 

datasets,
 

particularly
 

demonstrating
 

excellent
 

effects
 

in
 

terms
 

of
 

G-mean
 

and
 

F1
 

scores.
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0　 引　 言

机器学习技术能从复杂医疗数据中挖掘有价值

的信息,将机器学习方法运用到医疗数据集,在一定

程度上可以帮助相关医护人员提高疾病诊断的效

率[1] 。 诸如神经网络、 朴素贝叶斯、 K 近邻 ( K -
Nearest

 

Neighbors,
 

KNN ) 和支持向量机 ( Support
 

Vector
 

Machine,
 

SVM)等分类算法,在医学诊断问题

上已被广泛应用[2] 。 然而,传统的机器学习分类算

法通常是为平衡的数据分布而设计的,在现实世界

中,医疗领域面临的数据集往往是不平衡的,健康状

况的样本数量显著多于其他状况。
在医疗诊断领域中,准确地鉴别罕见病例对于

初步筛查和及时治疗至关重要[3] 。 但这常受制于

数据不平衡的问题,这种不平衡数据集为机器学习

模型的准确性和可靠性带来了巨大挑战,尤其当任

务涉及到识别较为罕见但极其重要的病例时,不平

衡数据常常引发模型偏差,使其倾向于预测健康状

态以提高总体准确率,从而导致漏诊率上升[4] 。 传

统评估指标,如准确率,不再适用,需采用召回率、查



准率和 F1 值等指标去评估模型对少数类的识别能

力[5] 。 为应对这些挑战,提出了多种方法,包括数

据重采样、成本敏感学习、和集成方法等,以提高模

型对罕见病例的检测准确性[6] 。
合成少数类过采样 ( Synthetic

 

Minority
 

Over -
sampling

 

Technique,
 

SMOTE)是一种经典的过采样

技术,通过线性插值方法生成合成少数类样本来平

衡类分布[7] 。 但 SMOTE 在少数类样本之间随机生

成新的样本,没有考虑多数类样本的分布,可能造成

类别边界模糊。 为克服该问题,Nguyen 等[8] 提出了

SVM - SMOTE
 

( Support
 

Vector
 

Machine -
 

Synthetic
 

Minority
 

Over-sampling
 

Technique,
 

SVM-SMOTE)方
法,利用 SVM 来识别多数类和少数类样本之间的边

界,并在少数类样本的支持向量之间进行过采样,以
改善决策边界的划分;He 等[9]提出自适应综合过采

样( Adaptive
 

Synthetic
 

Sampling,
 

ADASYN)方法,侧
重于那些周围被多数类样本包围的少数类样本,通
过计算这些样本的近邻分布来自适应调整合成样本

的生成数量; Sun 等[10] 通过将代价敏感学习与

AdaBoost 算法相结合,提出一种代价敏感的 Boosting
算法;Guo 等[11]提出排他性正则化机器( Exclusivity

 

Regularized
 

Machine,ERM),这是一种集成 SVM 方

法,通过垂直排列各 SVM 的分类界限来优化分类器

之间的多样性,提升了分类器的性能。
针对处理不平衡医疗数据集时分类器性能下降

的问题,本文提出了一种改进的去噪混合采样方法。
通过最小协方差行列式估计( Minimum

 

Covariance
 

Determinant,
 

MCD)算法清除噪声,并通过 MCD 和

局部离群因子(Local
 

Outlier
 

Factor,
 

LOF)算法相结

合来确定每个样本的权重,并根据权重进行混合采

样来平衡数据集。 本文提出的去噪混合采样方法不

仅可以识别并剔除噪声数据,还可以通过考虑数据

整体和局部的分布特性来进行采样,减轻过拟合的

风险,保留有价值的数据特征。 对 3 个公开的医疗

数据集进行实验,并与其他的重采样方法进行了比

较,本文提出的方法有效提升了召回率、查准率、
G-mean 和 F1 值, 验证了其对医疗不平衡数据分类

的有效性。

1　 相关技术

1. 1　 MCD 算法
 

MCD 算法是一种旨在估计多元正态分布的数

据集中心和稳健协方差矩阵的方法,主要应用于检

测数据集中的整体异常值[12] 。 MCD 算法的核心思

想是通过最小化协方差行列式来确定数据点的一个

子集,这个子集的协方差矩阵能够抵抗异常值的影

响,从而确保所找到的数据点受异常值影响较

小[13] 。 该算法通过计算数据点相对于该子集中心

的马氏距离来实现异常值的识别。 MCD 算法的具

体步骤:
(1)从原始数据集中随机选择一个具有 h 个样

本点初始子集 H, 并计算该初始子集的均值 μH 和协

方差矩阵 ΣH;
(2)利用均值和协方差矩阵,根据式(1)计算整

个数据集中每个点相对于该子集中心的马氏距离:

MD(xi) = (xi - μH) T(ΣH) -1(xi - μH) (1)
(3)根据计算出的马氏距离,选取距离中心最

近的点,以形成新的子集,用新子集计算中心和协方

差矩阵;
(4)多次迭代步骤(3),直到满足一定的收敛条

件,例如中心位置和协方差矩阵的变化很小,或者达

到预设的最大迭代次数。
1. 2　 LOF 算法

LOF 算法是一种基于密度的异常检测方法,其
核心思想是通过比较数据点与其近邻的局部密度来

鉴别异常值[14] 。 LOF 算法不仅仅考虑了数据点本

身的密集程度,还考虑了其邻居之间的密集程度。
通过计算每个数据点的局部离群因子,可以识别出

相对于其邻居而言异常的数据点。 LOF 算法的具体

步骤如下。
1)针对每个数据点,确定其与 K 近邻之间的距

离,根据距离计算局部可达密度,局部可达密度表示

了该数据点相对于其邻居的密集程度;
2)计算数据点近邻的局部可达密度与自身局

部可达密度的比值,得到局部离群因子,局部离群因

子越大,表示该数据点相对于其邻居更可能是一个

离群点;
3)依据局部可达密度之间的比率计算局部离

群因子,得到的局部离群因子可以用于排名,进而通

过设定阈值来鉴别哪些点是离群点。
1. 3　 SMOTE 算法

SMOTE 算法是一种用于处理不平衡数据集的

过采样方法,其主要目标是通过合成新的少数类样

本来平衡数据集,从而提升模型对少数类的识别能

力。 SMOTE 算法的具体步骤如下。
1)对于少数类中每一个样本 xi, 用欧氏距离计

算其到少数类中所有样本的距离,得到在 n 维空间

的 K 个近邻;
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2)据样本不平衡比例设置采样倍率 N, 对于每

一个少数类样本 xi, 从其 K 近邻中随机选择若干个

样本,假设选择的近邻为 xn;
3)对于每一个随机选出的近邻 xn, 分别与 xi 按

照下式生成新的样本。
xnew = xi + λ × (xn - xi) (2)

　 　 其中, λ 为[0,1]间的随机数。
SMOTE 算法通过生成新的合成样本而不是简

单地复制已有样本,能够有效缓解过拟合问题,增强

模型的泛化能力。

2　 基于 MCD 和 LOF 改进的去噪混合采样

2. 1　 数据去噪和边界权重计算

本文提出了一种结合 MCD 算法和 LOF 算法的

新型数据去噪和边界权重计算方法,通过 MCD 算法

识别和去除样本的全局异常值,再结合 LOF 算法对

局部异常值的检测,能够从整体和局部两个层面评

估和确定样本点的边界程度,并计算出每个样本能

够代表其边界重要性的权重,为后续的混合采样提

供一个更为清晰和准确的数据基础,每一步骤的原

理和具体操作如下。
1)应用 MCD 算法进行数据去噪。 MCD 算法是

一种鲁棒的统计方法,其作用是提供一个稳健的估

计来描述数据的分布特征。 MCD 算法可以找出全

局层面上与整体数据分布显著不同的异常值,并且

对数据的分布形状没有过多的假设要求。 MCD 算

法选择代表数据正常模式的子集,计算该子集的稳

健中心和协方差矩阵,利用得到的稳健中心和协方

差矩阵,可以计算出每个样本点的马氏距离,这是一

种综合考虑特征间相关性的距离度量。 本文分别对

少数类和多数类使用 MCD 算法,通过计算每个样本

点的马氏距离,可以量化每个点相对于整体数据分

布的偏离程度;将每类中马氏距离高于阈值的样本

点认定为噪声,从数据集中移除,从而实现数据的整

体去噪。
2)计算全局与局部异常分数。 去除噪声后,对

每个样本点计算两个异常分数:一个是基于 MCD 的

全局异常分数;另一个是基于 LOF 的局部异常分

数。 尽管 MCD 算法不能直接度量类别边界, 但

MCD 算法计算出的具有较高马氏距离的点通常位

于数据分布的边缘,这是由于在多变量数据中,处于

边界上的点通常具有与核心数据集不同的属性。 因

此,MCD 算法提供的全局异常分数反映了样本点与

整体数据分布的偏离程度。 LOF 算法衡量样本点相

对于其邻近点的局部密度差异[15] 。 处于类别边界

的点往往与其邻居相距较远,导致这些点具有较低

的局部密度。 这种密度差异会导致这些点的 LOF
分数相对较高,从而揭示了样本点在其邻域结构中

的边界程度。 因此,LOF 分数反映了样本点在其局

部邻域内的密度偏离。
3)融合异常分数计算边界权重。 综合全局异

常分数和局部异常分数,将其相加计算出每个样本

点的边界权重,这个权重是结合两个异常分数得到

的,反映了样本点在全局分布和局部邻域中的异常

性。 这一综合指标不仅考虑了样本点是否远离全局

数据中心,也考虑了其是否在局部邻域内显著的不

同于其他点。 通过这种方法,本文为每个样本点赋

予了一个边界程度的量化指标,为后续的混合采样

工作提供了重要的基础。
本文提出的结合 MCD 和 LOF 的数据去噪和边

界权重计算方法,不仅去除了数据的噪声,还实现了

一种多尺度的权重评估,对样本点是否属于边界的

判别更加精确。
2. 2　 混合采样

混合采样策略中,识别数据的边界点尤为重要,
在模型训练时能够提供更多的关键信息,因此采用

结合 MCD 和 LOF 计算出的边界权重来指导混合采

样的样本生成。 该混合采样策略融合了加权随机欠

采样和加权 SMOTE,旨在通过减少多数类样本数

量,同时增加少数类样本数量,来达到一个更加平衡

的数据集状态,同时保留样本的重要性信息。 基于

权重的混合采样的具体步骤如下。
1)基于权重的随机欠采样:使用计算出的样本

权重,对多数类实施基于权重的随机欠采样,样本被

选择的概率与其权重成反比,权重越低的样本越有

可能被丢弃;
2)

 

基于权重的 SMOTE 方法:(1)
 

选择少数类

的样本作为种子,并基于其权重来决定每个少数类

样本生成多少合成样本;(2)
 

对于每个种子样本,找
到其在特征空间中的 k 个最近邻,选择最近邻进行

合成样本生成时考虑不同样本的权重,选择权重较

高的样本作为插值的候选对象;(3)
 

基于种子样本

与选择的最近邻进行插值,生成新的合成样本;
3)

 

将欠采样后的多数类样本和过采样后的少

数类样本合并,形成一个新的、平衡的数据集,使用

生成的平衡数据集来训练机器学习模型。
本文使用基于 MCD 和 LOF 得到的权重信息,

优化了混合采样过程,为混合采样提供了精确的指
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导。
2. 3　 基于 MCD 和 LOF 改进的去噪混合采样算法

的详细步骤

输入　 原始数据集 D, MCD 算法参数(子集大

小 h, 马氏距离阈值 T), LOF 算法参数(最近邻个

数 KLOF), SMOTE 过采样最近邻个数 KSMOTE。
输出　 平衡化处理后的数据集 Dbalanced。
(1) 将数据集划分为训练集 Dtrain 和测试集

Dtest;
(2)计算混合采样后各类的样本数量,公式如

下:
l = (Dtrain 中多数类样本数量 + Dtrain 中少数类样

本数量) / 2 (3)
(3)应用 MCD 算法,子集大小为 h, 对 Dtrain 中

的少数类和多数类分别计算马氏距离 MD;
(4)将 MD 超过阈值 T 的数据点视为噪声点,

从 Dtrain 中移除噪声点,得到去噪后数据集 Ddenoised;
(5)对 Ddenoised 中每个样本点 i, 计算基于 MCD

的全局异常分数 Mi 和基于 LOF 的局部异常分数

Li;
(6)对于每个样本点 i, 将全局异常分数 Mi 和

局部异常分数 Li 相加,得到边界权重 Wi;
(7)对多数类样本根据 Wi 的值进行随机欠采

样,保留 l 个样本,样本被保留的概率与其权重成反

比,得到欠采样后的数据集 Dundersampled;
(8)对少数类样本执行基于边界权重的 SMOTE

过采样,选择 Wi 较高的样本作为种子点,并使用

KSMOTE 个最近邻生成新样本,得到过采样后的数据

集 Doversampled;
(9)合并 Dundersampled 和 Doversampled, 形成新的平衡

训练数据集 Dbalanced。
该算法通过 MCD 和 LOF 算法对样本进行多维

度的异常性分析,通过结合全局和局部的异常分数,
为样本赋予权重,指导后续的采样过程。 这样既考

虑了数据的全局分布特性,又考虑了样本的局部邻

域信息,使用该算法输出的平衡训练集训练机器学

习模型,获得最终的分类器,能够在处理不平衡数据

集时得到更优的分类结果。

3　 实验

3. 1　 数据集和实验环境

本文选择 3 个来自 UCI 数据库的公开医疗数据

集进行实验。 Heart 数据集为心脏病数据集,包括心

脏病患者和非患者的各种属性,如年龄、性别、胸痛

类型、静息血压等,目标是预测患者是否有心脏病;
Pima 数据集为糖尿病数据集,包含来自皮马印第安

人的女性的医疗记录,包括年龄、怀孕次数、胰岛素

水平等,目标是预测患者是否有Ⅱ型糖尿病;WBCD
数据集为乳腺癌威斯康星(诊断)数据集,包含了乳

腺癌肿瘤的特征,目标变量是肿瘤是恶性的还是良

性的。 实验使用数据集的具体参数见表 1,其中 IR
为不平衡率,公式如下:

IR = 少数类样本数
多数类样本数

(4)

表 1　 实验数据集参数

Table
 

1　 Experimental
 

dataset
 

parameters

数据集 特征数 样本数
少数类
样本数

多数类
样本数

IR

Pima 8 768 268 500 0. 536

Heart 13 294 106 188 0. 564

WBCD 30 569 212 357 0. 594

　 　 本文实验均在 Intel(R)
 

Core(TM)
 

i5-1035G1
 

CPU
 

@
 

1. 00
 

GHz
 

1. 19
 

GHz 处理器,16
 

G 内存的电

脑上进行,软件环境为 Python
 

3. 9。 实验采用分层

随机抽样的方式来划分训练集与测试集,其中训练

集与测试集的比例为 4 ∶ 1,混合采样合成的数据样

本只参与分类器的训练阶段,测试阶段的数据全部

为原始数据。
3. 2　 评价指标

评估不平衡数据分类效果时,本文采用召回率、
查准率、G-mean 和 F1 值作为评价指标,公式如下:

Recall = TP
TP + FN

(5)

Precision = TP
FP + TP

(6)

G - mean = TP × TN
TP + FN( ) × TN + FP( )

(7)

F1 = 2 × Precision × Recall
Precision + Recall

(8)

　 　 其中,TP 为真正例,指实际类别为正类且预测

也为正类;FP 为假正例,指实际类别为负类,但模型

预测错误为正类;FN 为假反例,指实际类别为正类,
但模型预测错误为负类的情况;TN 为真反例,指实

际类别为负类,预测也为负类。
在这些指标中,召回率衡量分类器识别正类样

本的能力;查准率评估被识别为正类的样本中实际

正类的比例;G-mean 是查准率和召回率的几何平

17第 11 期 董嘉轩,
 

等:
  

基于去噪混合采样的医疗不平衡数据分类



均,用于衡量不平衡数据上的性能; F1 值是查准率

和召回率的调和平均数,能够综合考察查准率和召

回率[16] 。
3. 3　 实验结果及分析

为评估本文提出的去噪混合采样方法在不平衡

医疗数据集上的性能,通过在 3 个医疗数据集上的

实验来验证该方法的有效性及其与主流机器学习分

类器的兼容性。 选择 3 种重采样方法即 SMOTE、

ADASYN 和基于 K-means 的欠采样方法,作为对比

方法;同时,为了证明本文方法的普适性,选择 3 种

经典的机器学习分类算法即 SVM、随机森林( RF)
和 KNN,将这些分类算法与不同的重采样方法结

合,进行了对比实验,全面评估本文方法在不同情境

下的表现与适用性。 使用不同分类算法时,本文方

法和其他 3 种重采样方法在 3 个医疗数据集上的实

验结果见表 2 ~表 4,其中加粗的结果为最优结果。

表 2　 使用 SVM 分类时不同算法的评价指标

Table
 

2　 Evaluation
 

metrics
 

for
 

different
 

algorithms
 

when
 

using
 

SVM
 

classification

数据集 评价指标 本文方法 SMOTE ADASYN 基于 K-means 聚类的欠采样

Pima 召回率 0. 777
 

78 0. 695
 

74 0. 762
 

39 0. 657
 

09

查准率 0. 636
 

36 0. 582
 

33 0. 585
 

00 0. 586
 

36

G-mean 0. 591
 

11 0. 520
 

37 0. 543
 

78 0. 497
 

70

F1 值 0. 700
 

00 0. 630
 

80 0. 658
 

94 0. 618
 

06

Heart 召回率 0. 714
 

29 0. 630
 

17 0. 634
 

06 0. 638
 

71

查准率 0. 526
 

32 0. 571
 

08 0. 579
 

60 0. 469
 

35

G-mean 0. 526
 

32 0. 464
 

00 0. 443
 

42 0. 411
 

74

F1 值 0. 652
 

17 0. 594
 

57 0. 600
 

94 0. 537
 

12

WBCD 召回率 0. 947
 

37 0. 900
 

00 0. 979
 

17 0. 853
 

66

查准率 0. 972
 

97 0. 918
 

37 0. 810
 

34 0. 972
 

22

G-mean 0. 934
 

90 0. 843
 

75 0. 815
 

97 0. 841
 

96

F1 值 0. 960
 

00 0. 909
 

09 0. 886
 

79 0. 909
 

09

表 3　 使用随机森林分类时不同算法的评价指标

Table
 

3　 Evaluation
 

metrics
 

for
 

different
 

algorithms
 

when
 

using
 

Random
 

Forest

数据集 评价指标 本文方法 SMOTE ADASYN 基于 K-means 聚类的欠采样

Pima 召回率 0. 722
 

22 0. 636
 

40 0. 709
 

26 0. 758
 

38

查准率 0. 661
 

02 0. 635
 

23 0. 622
 

37 0. 587
 

25

G-mean 0. 577
 

78 0. 504
 

20 0. 547
 

63 0. 541
 

46

F1 值 0. 690
 

27 0. 633
 

02 0. 660
 

06 0. 661
 

36

Heart 召回率 0. 809
 

52 0. 656
 

45 0. 686
 

92 0. 799
 

07

查准率 0. 680
 

00 0. 717
 

18 0. 709
 

75 0. 667
 

47

G-mean 0. 639
 

10 0. 570
 

48 0. 575
 

28 0. 627
 

03

F1 值 0. 739
 

13 0. 680
 

88 0. 690
 

10 0. 719
 

26

WBCD 召回率 0. 973
 

68 0. 951
 

22 0. 955
 

56 0. 942
 

31

查准率 1. 000
 

00 0. 951
 

22 0. 934
 

78 0. 960
 

78

G-mean 0. 973
 

68 0. 925
 

16 0. 914
 

01 0. 911
 

91

F1 值 0. 986
 

67 0. 951
 

22 0. 945
 

05 0. 951
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表 4　 使用 KNN 分类时不同算法的评价指标

Table
 

4　 Evaluation
 

metrics
 

for
 

different
 

algorithms
 

when
 

using
 

KNN
 

classification

数据集 评价指标 本文方法 SMOTE ADASYN 基于 K-means 聚类的欠采样

Pima 召回率 0. 685
 

19 0. 641
 

51 0. 660
 

38 0. 672
 

73

查准率 0. 616
 

67 0. 576
 

27 0. 479
 

45 0. 606
 

56

G-mean 0. 527
 

59 0. 482
 

72 0. 411
 

92 0. 509
 

64

F1 值 0. 649
 

12 0. 607
 

14 0. 555
 

56 0. 637
 

93

Heart 召回率 0. 761
 

90 0. 655
 

17 0. 692
 

31 0. 714
 

29

查准率 0. 615
 

38 0. 678
 

57 0. 642
 

86 0. 576
 

92

G-mean 0. 561
 

40 0. 458
 

62 0. 482
 

52 0. 507
 

52

F1 值 0. 680
 

85 0. 666
 

67 0. 666
 

67 0. 638
 

30

WBCD 召回率 0. 947
 

37 0. 906
 

98 0. 940
 

00 0. 886
 

79

查准率 1. 000
 

00 0. 847
 

83 0. 870
 

37 0. 979
 

17

G-mean 0. 947
 

37 0. 817
 

56 0. 837
 

19 0. 872
 

25

F1 值 0. 972
 

97 0. 876
 

40 0. 903
 

85 0. 930
 

69

　 　 实验评估了本文方法和其他重采样方法在

SVM、RF 和 KNN 分类器上的性能,关注了召回率、
查准率、G-mean 和 F1 值这 4 个指标。 通过表 2 ~
表 4 可以看出,在使用 SVM 分类器时,本文方法的

多数指标超越了 SMOTE、 ADASYN 以及基于 K -
means 的欠采样方法,在 Heart 数据集上,本文方法

的查准率相对较低;在 WBCD 数据集上,本文方法

的召回率低于 ADASYN 方法。 采用 RF 做为分类器

时,在 Pima 数据集上,本文方法的召回率略低于基

于 K-means 的欠采样方法,但在查准率、G-mean 和

F1 值上具有更优的结果,对于 Heart 数据集,本文方

法的查准率数值相对较低,而其他指标均取得了良

好结果;在 WBCD 数据集上,本文方法的各项指标

均达到最优。 在 KNN 分类器的评估中,本文方法仅

在 Heart 数据集的查准率上数字较低,在 Pima 数据

集和 WBCD 数据集上,本文方法在所有指标上均优

于其他对比方法。
　 　 综合来看,本文方法在多个分类器和数据集中

显示出了均衡和可靠的性能,尤其是在 G-mean 和

F1 值上,在使用 3 种分类器时,在所有数据集上本

文方法均优于其他对比方法。 G-mean 的提高说明

本文方法对多数类和少数类的识别能力是均衡的。
F1 值的提高表明本文方法在查准率和召回率的提

高是平衡的,具有更好的整体分类精度。 在实际应

用中, F1 值的提高能帮助医生寻找查准率和召回

率之间的最佳平衡点,尤其是在那些对查准率和召

回率同样重视的场景中。 在不同数据集上都能维持

更高的 G-mean 和 F1 值,也证明了本文方法具有较

好的泛化能力和鲁棒性。

4　 结束语

本文提出了一种融合 MCD 算法和 LOF 算法的

改进去噪混合采样方法。 该方法结合 MCD 算法和

LOF 算法进行数据去噪和边界权重计算,有效去除

了全局噪声,确保了数据质量,揭示了样本点的边界

程度。 在混合采样阶段,对于少数类过采样,优先选

择权重较高的边界点进行新样本点的生成,既加强

了模型对复杂决策边界的学习,又减轻了对多数类

核心区域过度采样的风险,避免了过拟合;对于多数

类欠采样,权重信息有助于识别并保留多数类中重

要的边界样本点。 在多个医疗不平衡数据集和分类

器上的实验结果验证了该方法的有效性,尤其是在

G-mean 和 F1 值两个关键指标上,本文方法具有明

显的优势,不仅提升了少数类识别的精度,也保持了

整体分类的准确性。
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