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摘　 要:
 

针对深度神经网络黑盒攻击对抗中存在攻击效率低、扰动强度大以及难以生成高攻击性对抗样本等问题,本文提出

了一种基于数值微分的对抗样本生成算法。 该算法采用中心差分法计算梯度,并融合了高斯噪声初始化与数值微分梯度优

化的复合扰动策略;通过梯度下降法迭代优化扰动,同时引入适应度函数以动态权衡攻击效果与扰动程度。 手写数字识别实

验结果表明,本文提出的算法能够有效生成对抗样本,通过适应度函数评估对抗样本的攻击效果与扰动程度,验证了算法的

有效性。 该算法为评估深度神经网络的鲁棒性提供有效的黑盒攻击工具,并为设计安全防御机制提供参考。
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Abstract:
 

To
 

address
 

the
 

challenges
 

of
 

low
 

attack
 

efficiency,
 

excessive
 

perturbation
 

magnitudes,
 

and
 

difficulties
 

in
 

generating
 

highly
 

aggressive
 

adversarial
 

examples
 

in
 

black-box
 

attacks
 

against
 

deep
 

neural
 

networks,
 

this
 

paper
 

develops
 

an
 

adversarial
 

sample
 

generation
 

algorithm
 

based
 

on
 

numerical
 

differentiation.
 

The
 

proposed
 

methodology
 

employs
 

the
 

central
 

difference
 

method
 

for
 

gradient
 

computation
 

and
 

integrates
 

a
 

composite
 

perturbation
 

strategy
 

that
 

combines
 

Gaussian
 

noise
 

initialization
 

with
 

gradient
 

optimization
 

via
 

numerical
 

differentiation.
 

Perturbations
 

are
 

iteratively
 

refined
 

through
 

gradient
 

descent
 

optimization,
 

while
 

a
 

fitness
 

function
 

dynamically
 

balances
 

attack
 

effectiveness
 

with
 

perturbation
 

intensity. Experimental
 

validation
 

on
 

benchmark
 

datasets
 

for
 

handwritten
 

digit
 

recognition
 

demonstrates
 

the
 

algorithm's
 

efficacy
 

in
 

generating
 

adversarial
 

samples.
 

Quantitative
 

evaluation
 

through
 

the
 

fitness
 

function,
 

which
 

assesses
 

both
 

attack
 

success
 

rates
 

and
 

perturbation
 

levels,
 

confirms
 

the
 

approach's
 

effectiveness.
 

This
 

algorithm
 

serves
 

as
 

a
 

robust
 

black-box
 

attack
 

tool
 

for
 

evaluating
 

the
 

vulnerability
 

of
 

deep
 

neural
 

networks
 

and
 

provides
 

a
 

theoretical
 

foundation
 

for
 

designing
 

secure
 

defense
 

mechanisms.
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0　 引　 言

随着计算机技术和深度学习的革新与普及,目
标检测、计算机视觉、语音识别和自然语言理解等已

深入人们的日常生活。 然而,深度学习应用面临着

安全性挑战。 2015 年,Goodfellow 等[1] 首次通过一

个直观实验演示了“对抗攻击”的概念,该实验对一

张清晰的大熊猫图像添加视觉上难以察觉的细微扰

动,生成“对抗样本”,该样本被以高置信度误分类

为“长臂猿”,而原始熊猫图像则被正确识别,揭示

了深度学习模型面对精心设计的微小输入扰动时的

脆弱性。 深度神经网络在面对对抗性样本时表现脆

弱,即便是微小的扰动也可能导致深度神经网络的

判断失误。 当在标准样本中植入精心设计的细微扰



动时,深度神经网络往往以较高的置信度输出错误

预测,这种经过特殊处理的对抗样本具有跨模型的

泛化能力,能够同时使多个不同的深度神经网络产

生误判。
根据攻击者对深度神经网络内部信息的掌握程

度,攻击场景可划分为白盒攻击和黑盒攻击。 在实

际应用场景中,攻击者往往难以获取深度神经网络

的完整技术细节,包括网络架构设计、权重参数配置

及训练数据集等核心信息。 这种信息不对称的条件

下,黑盒攻击模式更贴合真实世界的对抗场景。 现

有研究已提出多种黑盒攻击范式,Su 等[2] 提出一种

只需对图片中少数的像素进行修改,便能导致模型

出现分类错误的无目标黑盒攻击方法;Brendel 等[3]

提出了一种基于边界的黑盒攻击方法,从生成较大

的对抗扰动开始,并在保持对抗性的同时,根据一定

的策略将该对抗样本向原始图像的方向移动,直至

该对抗样本与原始图像的差异最小;Chen 等[4] 提出

了零阶优化(Zeroth
 

Order
 

Optimization,
 

ZOO)攻击,
仅利用输入和模型提供的相应置信度得分来估算模

型的梯度,采用有限差分法,通过在添加微小扰动后

评估图像坐标来估算每个坐标的梯度方向;黄立峰

等[5]开发了一种基于进化计算和注意力机制的黑

盒攻击策略,成功实现了高效的黑盒攻击;Bhagoji
等[6]提出了一种新型的黑盒攻击方法,依赖于梯度

估计和目标模型的类别概率,并展现了针对不同攻

击目标的通用性。
针对现有方法对梯度信息或概率输出的依赖性

问题,本文提出一种基于数值微分的黑盒对抗样本

生成算法。 该算法通过迭代施加微小结构化扰动,
结合损失函数约束机制,在无需掌握模型内部结构

和梯度信息回传的条件下,实现深度神经网络响应

的近似估计与对抗样本的生成,进一步探索黑盒攻

击的可能性。

1　 理论基础

1. 1　 数值微分

数值微分,通常指的是利用函数在特定离散点

上的测量值 (或观测值) 来估算其近似导数的过

程[7] 。 这一过程旨在解决一类典型的不适定问题,
即由于离散数据的有限性和不连续性,微分运算的

精确性可能会受到一定影响。 当待求导的函数受到

较小的扰动时,求导后产生的误差可能会变得非常

大,这是一个典型的数值不稳定性问题[8] 。 为减少

数值微分的误差,采用中心差分来实现数值差分,即

估算的梯度 gi:

gi = ( f(x +εi) - f(x -εi)) / (2εi) ≈ ∂f(x)
∂xi

(1)

其中, εi 是一个微小的值, ∂f(x)
∂xi

表示关于 xi

的偏导数。
梯度法是机器学习中最优化问题求解的常用方

法,通过迭代更新模型参数以最小化损失函数,从而

实现模型的优化和学习[9] 。 梯度法如下式所示:

xi_new =xi_old - lr × ∂f(x)
∂xi

 (2)

　 　 其中, xi_old 表示原来的值;
 

xi_new 为更新后的值;
 

lr 是学习率。
1. 2　 深度学习模型

在构建神经网络时,输入层神经元的数量直接

对应于数据集中样本的维度。 对于 sklearn 库中

datasets 模块的手写数字数据集中 8×8 二维图像样

本,当转化为一维向量时,包含 64 个灰度值,因此在

构建针对该数据集的神经网络模型时,设定输入层

神经元的数量为 64;第 2 层(即隐藏层 1)包含 128
个神经元,这些神经元与输入层的所有元素(即输

入数据的特征) 实现全连接,通过一组特定的权重

和偏置项,每个神经元对输入数据进行线性组合,通
过一个非线性激活函数的处理,引入非线性特性,从
而生成该神经元的输出;第 3 层(即隐藏层 2)则包

含 64 个神经元,其与第 2 层(隐藏层 1)的所有神经

元实现全连接,每个神经元通过权重和偏置项同样

进行线性组合,并通过非线性激活函数处理,产生该

层的输出。 这一设计通过减少神经元的数量(从

128 减少到 64),以降低过拟合的风险,并进一步提

炼和整合从前面层次学习到的特征。 MNIST 数据

集包含的是手写体数字 0 ~ 9,共计 10 个分类,因此

第 4 层(即输出层)的神经元数量设定为 10,这些神

经元与第 3 层(隐藏层 2) 的所有神经元实现全连

接。 在输出层,采用 Softmax 激活函数,将原始输出

转化为概率分布,从而反映输入数据属于每个类别

的可能性。
深度神经网络的结构设计,包括网络深度、各层

神经元的数量以及激活函数的选择,均根据具体任

务需求和实验结果调整[10-11] 。 不同的设计可能会

导致神经网络在性能和效果上有所差异。

2　 基于数值微分的对抗样本生成算法

在机器学习模型的安全性评估中,对抗样本的
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生成起到关键作用。 无目标对抗样本生成算法的核

心在于寻找一种能够导致深度神经网络对处理后的

样本进行任意错误分类的扰动,而无需预设特定的

目标类别。 这种算法主要关注评估深度神经网络的

整体脆弱性,而非针对某一特定类别的攻击。 通过

逐步引入细微的结构化扰动,并结合损失函数限制

机制,可以在不获取模型内部结构与梯度信息的情

况下,近似计算出所需的梯度,进而指导扰动的生

成。 本文提出的基于数值微分的无目标对抗样本生

成算法伪代码描述如下:
算法 1　 基于数值微分的对抗样本生成算法

输入 　 损失函数 fitness(X), 训练好的模型

mymodel, 输入原始样本 X 及其标签 Y, 原始样本数

量 NumSample
输出　 对抗样本 Xα

Step
 

1 　 设 置 算 法 参 数 ( 候 选 对 抗 样 本

NumAdvSample,扰动大小 ε, 迭代次数 T)
Step

 

2　 while(i←1<NUM)
　 Step

 

2. 1　 for
 

n ← 1
 

to
 

NumAdvSample
 

do
　 　 Step

 

2. 1. 1　 产生与原始样本 i 形状相同

的高斯噪声,生成含有高斯噪声扰动的初始化样本

ad_i_n
　 Step

 

2. 1. 2　 for
 

t ← 1
 

to
 

T
 

do
　 　 　 　 　 　 　 　 按公式(1)计算样本 ad_i_n

的梯度信息

　 　 　 　 　 　 　 　 按公式(2)更新样本 ad_i_n
　 　 　 　 　 　 　 end

 

for
　 　 　 　 　 end

 

for
Step

 

2. 2 　 按公式(6) 计算 NumAdvSample 个

对抗样本的的损失值

Step
 

2. 3　 根据损失值对 NumAdvSample 个对

抗样本进行排序,选择损失值最小的对样样本为样

本 i 生成的对抗样本
  

　 　 　 end
 

while
Step

 

3　 输出 NUM 个对抗样本 Xα

3　 实验与分析

3. 1　 实验设置与数据集

实验在 Windows
 

10 操作系统下进行, 采用

Jupyter
 

Notebook 作为交互式编程平台,实验使用

Python 语言开发。 实验环境的硬件配置包括 Intel
(R)

 

Core ( TM )
 

i7 - 6700HQ
 

CPU, 运行频率为

2. 60 ~
 

2. 59
 

GHz,并配备 8
 

GB 内存,确保实验的稳

定性和性能。

实验采用 sklearn 库中 datasets 模块的手写数字

数据集,该数据集包含 1
  

797 张 8×8 像素的灰度数

字图像,划分为 1
 

707 个训练样本和 90 个测试样

本,每个样本表示为 64 维特征向量。
3. 2　 评价指标

在评估对抗样本的攻击效果时,本实验采用攻

击性和扰动程度作为评价指标。 攻击性指标用于衡

量生成的对抗样本对深度神经网络的攻击效果,具
体可分为目标对抗性攻击和无目标对抗性攻击两种

类型[12] ,公式如下:
ADV(adv_sample)= J(mymodel(adv_sample),y_target)

(3)
ADV(adv_sample)= (score_true) / (rank(adv_samplei))

(4)
　 　 其中,ADV ( adv _sample) 表示对抗样本 adv _
sample 的攻击性;交叉熵函数 J(·) 用于衡量预测

值与真实标签之间的差异;score_true 是真实标签的

置信度;rank( adv_sample) 表示真实标签的置信度

得分排名。
扰动程度是量化原始样本与其对应对抗样本之

间差异的度量,通常使用 Lp 范数( L0、L2、L∞ ) 表示,
其值越小意味着扰动越隐蔽[13] 。 L0(p = 0)范数统

计被修改特征的数量(如图像中改变的像素数量),
反映扰动的稀疏性; L2(p = 2)范数衡量对抗样本与

原始样本之间的差异,即扰动量; L∞ (p = ∞ ) 范数

则标识所有特征中最大的绝对值变化,体现了单维

度上的最大扰动量。 Lp 范数的数学定义如下式:
        

Lp = ‖adv_sample‖p = ∑
n

i = 1
| adv_samplei | p( )

1
p (5)

其中, ‖adv_sample‖p 表示对抗样本 adv _
sample 的 Lp 范数, adv_samplei 是对抗样本 adv _
sample 在第 i 个维度上的分量值。
3. 3　 适应度函数设计

在对抗攻击场景中,有效的对抗样本需同时满

足两个关键条件:高攻击性即成功误导深度神经网

络产生错误输出和低扰动程度即所添加的扰动微小

到难以被人类察觉[14] 。 这两个条件构成了一个多

目标优化问题。 因此,本文设计的损失函数综合考

虑了攻击性和扰动程度这两个因素,计算公式为:
loss_Funtion(adv_sample) = ADV(adv_sample) +
　 alpha ×‖adv_sample‖2 (6)
‖adv_sample‖2 =‖adv_sample - ori_sample‖2

 

(7)
　 　 其中,loss_Funtion( adv_sample)表示对抗样本
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adv_sample 的适应度函数;ADV( adv_sample) 表示

对抗样本 adv_sample 的攻击性;‖adv_sample‖2 表

示对抗样本 adv_sample 的 L2 范数;alpha 表示多目

标优化中约束目标函数程度的惩罚系数,本文取值

alpha = 0. 01;‖adv_sample-ori_sample‖2 表示对抗

样本 adv_sample 与原始样本之间的差异程度即扰

动程度。
3. 4　 实验结果与分析

对抗样本是通过向原始样本引入特定扰动生成

的。 本文采用 4 类对抗样本,分别评估其对深度神

经网络的攻击效果:
(1)第一类样本:未引入任何扰动的原始样本,

作为基准对照组;
(2)第二类样本:通过叠加随机高斯噪声生成

的扰动样本;
(3)第三类样本:利用梯度计算生成定向扰动

的数值微分优化样本;
(4)第四类样本:融合高斯噪声与数值微分策

略的复合扰动样本。
首先,使用包含 1

 

707 个手写数字样本的训练

集对深度神经网络进行训练,该模型在测试集上实

现了 94. 4%的分类准确率;其次,通过对测试集原

始样本施加扰动,生成了 4 类对抗样本,包括原始样

本、高斯噪声扰动样本、数值微分优化样本、高斯噪

声和数值微分复合扰动样本;最后,使用这些对抗样

本对训练完成的深度神经网络进行攻击测试。 为了

全面评估攻击效果,设置对抗样本的数量为 10,并
控制其他参数不变,分别进行迭代次数为 2、3、4、5、
10 和 15 的攻击对抗实验,实验结果见表 1。

表 1　 不同迭代次数攻击成功率

Table
 

1　 Attack
 

success
 

rate
 

of
 

different
 

iterations

对抗样本
迭代次数

2 3 4 5 10 15

第一类样本 0. 056 0. 056 0. 056 0. 056 0. 056 0. 056

第二类样本 0. 067 0. 133 0. 122 0. 067 0. 067 0. 122

第三类样本 0. 589 0. 589 0. 580 0. 578 0. 600 0. 578

第四类样本 0. 960 0. 944 0. 900 0. 967 0. 911 0. 944

　 　 由表 1 可见,在攻击效果方面,采用复合扰动策

略的第四类样本攻击效果最好,其在第 5 次迭代时

达到了 96. 7%的攻击成功率,相比使用数值微分优

化方法的第三类样本,平均优势为 37. 8%;而第二

类样本与第一类样本的攻击成功率差异维持在

8. 7%以内,说明随机噪声对模型抗攻击能力的削弱

作用较为有限;第四类样本在第 5 次迭代时达到峰

值 96. 7%,但在第 15 次迭代时降至 94. 4%,表明过度

迭代可能导致扰动效果过度优化;第三类样本攻击成

功率的波动幅度维持在±1. 1%之间,说明梯度攻击具

有较好的稳定性;第二类样本在第 3 次迭代时出现异

常峰值 13. 3%,凸显了随机扰动的不确定性。
根据表 2 所示的实验结果,当迭代次数为 5 时,

第四类样本呈现出最佳的攻击效果,其成功率达到

96. 7%。 基于此,本文进一步探讨了对抗样本数量

对攻击效果的影响。 在保持迭代次数为 5 的条件

下,本文设计 4 类不同数量的对抗样本实验,样本数

量从 1 到 15,对深度神经网络进行攻击,4 类对抗样

本攻击成功率见表 2。
表 2　 不同对抗样本数量的攻击成功率

Table
 

2　 Attack
 

success
 

rate
 

under
 

varying
 

numbers
 

of
 

adversarial
 

examples

对抗样

本数量

对抗样本

第一类样本 第二类样本 第三类样本 第四类样本

1 0. 056 0. 111 0. 544 0. 633

2 0. 056 0. 133 0. 556 0. 744

3 0. 056 0. 156 0. 556 0. 800

4 0. 056 0. 189 0. 567 0. 833

5 0. 056 0. 167 0. 578 0. 856

6 0. 056 0. 189 0. 578 0. 911

7 0. 056 0. 222 0. 589 0. 900

8 0. 056 0. 244 0. 589 0. 911

9 0. 056 0. 278 0. 589 0. 944

10 0. 056 0. 289 0. 578 0. 900

11 0. 056 0. 233 0. 578 0. 944

12 0. 056 0. 256 0. 589 0. 922

13 0. 056 0. 267 0. 589 0. 944

14 0. 056 0. 333 0. 589 0. 944

15 0. 056 0. 256 0. 589 0. 956

　 　 表 2 实验结果表明,在相同对抗样本数量下,4
类样本的攻击成功率存在明显差异,例如:当对抗样

本数量为 10 时,4 类对抗样本对深度神经网络攻击

的成功率分别为 0. 056、0. 289、0. 578 和 0. 900。 整

体而言,增加对抗样本数量有助于提升攻击成功率,
这一趋势具有普遍性,其中第二类和第四类样本尤

为明显。 值得注意的是,仅需少量对抗样本即可实

现较高攻击成功率,突显深度神经网络在面对第四

类对抗样本时存在的严重安全隐患。
表 2 的实验结果表明,增加对抗样本数量有助

于提升攻击成功率。 因此,本文在设定对抗样本数

量为 15 个、攻击迭代次数为 5 次的条件下,对第二
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类、第三类及第四类对抗样本进行了多维性能对比

实验。 评估指标采用攻击成功率、扰动程度和适应

度函数值,其中适应度函数值越低,表明攻击效率越

高,该指标用于综合评估攻击效果,实验结果见表

3。
表 3　 对抗样本多维度性能对比实验结果

Table
 

3 　 Experimental
 

results
 

of
 

multidimensional
 

performance
 

comparison
 

for
 

adversarial
 

examples

对抗样本 攻击成功率 扰动程度 适应度函数值

第二类样本 0. 244 0. 080 0. 162

第三类样本 0. 578 0. 057 0. 152

第四类样本 0. 922 0. 112 0. 011

　 　 根据表 3 数据,第四类样本的攻击成功率最高,
但其扰动程度也最大;第三类样本的扰动程度最小,
攻击成功率中等;第二类样本的表现最弱。 第四类

样本的综合效率最佳,第三类次之,第二类最差,表
明攻击效率与扰动程度之间存在权衡:第四类样本

以高扰动换取高效攻击,第三类样本在隐蔽性与效

果之间取得平衡,第二类样本则需要进一步优化。
在实际应用中,第四类样本适合强攻击场景,而第三

类样本则适合隐蔽性需求较高的场景。
为可视化原始样本与对抗样本之间扰动的动态

变化特征,选择生成第四类对抗样本,从测试集中随

机选取了 3 个原始样本作为初始样本,分别设置了

2、3、4、5、10 和 15 次迭代,生成了一系列对应的对

抗样本,从原始样本到最终对抗样本的动态演变过

程如图 1 所示。
　 　 图 1 直观地呈现了扰动的累积过程,为理解攻

击机理及深度神经网络的脆弱性提供了依据。 随着

迭代次数的增加,施加于原始样本的微小扰动逐步

累积,使对抗样本与原始样本的差异逐渐显著,攻击

效果也随之增强,这一动态过程揭示了对抗样本的

生成是一个逐步优化的过程,有助于深入理解攻击

方法的内在机理。

原始样本 不同迭代次数的对抗样本
2 3 4 5 10 15

图 1　 原始样本到最终对抗样本的动态演变过程

Fig.
 

1　 Dynamic
 

evolution
 

process
 

from
 

original
 

samples
 

to
 

final
 

adversarial
 

samples

4　 结束语

针对深度神经网络在黑盒攻击场景下面临的安

全性挑战,本文提出了一种基于数值微分的对抗样

本生成算法。 该算法融合了高斯噪声初始化与数值

微分梯度优化的复合扰动策略,并结合梯度下降法

进行迭代优化扰动,能够在无需掌握模型内部结构

或依赖梯度回传的条件下,生成具有高攻击性的对

抗样本;通过引入适应度函数,算法动态平衡了攻击

效果与扰动程度,使得生成的对抗样本既具备攻击

能力,又最大程度维持了视觉隐蔽性。 在手写数字

识别实验中,对比分析 4 种不同扰动策略生成的对

抗样本,发现融合高斯噪声与数值微分的复合策略

攻击效果最佳,优于仅采用随机高斯噪声或单一数

值微分优化的方法。 此外,实验探讨了对抗样本数

量与迭代次数对攻击效果的影响,揭示了对抗样本

在生成过程中的动态演变规律,结果表明:随着对抗

样本数量的增加和迭代次数的优化,攻击成功率得

到提升,为理解对抗攻击机理及深度神经网络的脆

弱性提供了重要依据。
综上所述,本文所提出的基于数值微分的对抗

样本生成算法为评估深度神经网络鲁棒性提供了一

种有效的黑盒攻击工具,并为设计安全防御机制提

供了理论参考与实践指导。 未来研究将进一步探索

该算法在不同数据集和模型架构下的普适性及其与

其他防御策略相结合的可能性,旨在推动深度神经
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网络安全领域的研究与发展。
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