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Adversarial sample generation algorithm based on numerical differentiation
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Abstract: To address the challenges of low attack efficiency, excessive perturbation magnitudes, and difficulties in generating
highly aggressive adversarial examples in black—box attacks against deep neural networks, this paper develops an adversarial sample
generation algorithm based on numerical differentiation. The proposed methodology employs the central difference method for
gradient computation and integrates a composite perturbation strategy that combines Gaussian noise initialization with gradient
optimization via numerical differentiation. Perturbations are iteratively refined through gradient descent optimization, while a fitness
function dynamically balances attack effectiveness with perturbation intensity. Experimental validation on benchmark datasets for
handwritten digit recognition demonstrates the algorithm’s efficacy in generating adversarial samples. Quantitative evaluation through
the fitness function, which assesses both attack success rates and perturbation levels, confirms the approach’s effectiveness. This
algorithm serves as a robust black—box attack tool for evaluating the vulnerability of deep neural networks and provides a theoretical
foundation for designing secure defense mechanisms.
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Table 1 Attack success rate of different iterations
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Table 2 Attack success rate under varying numbers of adversarial

examples
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Table 3  Experimental results of multidimensional performance
comparison for adversarial examples
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Fig. 1 Dynamic evolution process from original samples to final adversarial samples
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