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摘　 要:
 

基于表面肌电信号(Surface
 

Electromyography,sEMG)的假肢动作识别方法因其良好的应用前景成为智能假肢控制领域

的重要研究方向。 为解决传统 CNN 和 LSTM 在训练效率和实时响应上的局限性,本文将 Transformer 架构引入实时手部肌电信

号识别任务,构建了一个基于 Transformer 的实时手部运动识别框架,利用 Transformer 特有的时空特征捕获能力,提高实时手部

肌电信号识别性能。 通过对比实验,验证了其在识别性能、训练效率和实时性等方面相较于 CNN 和 LSTM 模型的优势。
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Abstract:
 

Surface
 

electromyography
 

(sEMG) -based
 

prosthetic
 

gesture
 

recognition
 

has
 

emerged
 

as
 

a
 

significant
 

research
 

focus
 

in
 

intelligent
 

prosthetic
 

control
 

due
 

to
 

its
 

promising
 

application
 

prospects.
 

To
 

address
 

the
 

limitations
 

of
 

traditional
 

Convolutional
 

Neural
 

Networks
 

(CNNs)
 

and
 

Long
 

Short-Term
 

Memory
 

(LSTM)
 

networks
 

in
 

training
 

efficiency
 

and
 

real-time
 

performance,
 

this
 

study
 

introduces
 

the
 

Transformer
 

architecture
 

into
 

the
 

task
 

of
 

real - time
 

hand
 

motion
 

recognition
 

using
 

sEMG
 

signals,
 

developing
 

a
 

transformer-based
 

real- time
 

hand
 

motion
 

recognition
 

framework.
 

This
 

framework
 

aims
 

to
 

leverage
 

the
 

transformer 's
 

distinctive
 

capability
 

for
 

capturing
 

spatiotemporal
 

features
 

to
 

enhance
 

the
 

performance
 

of
 

real- time
 

sEMG-based
 

hand
 

motion
 

recognition.
 

Through
 

comparative
 

experiments,
 

this
 

paper
 

demonstrates
 

the
 

framework′s
 

superiority
 

over
 

CNN
 

and
 

LSTM
 

models
 

in
 

terms
 

of
 

recognition
 

accuracy,
 

training
 

efficiency,
 

and
 

real-time
 

performance.
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0　 引　 言

研发具备高度仿生功能及感知功能的理想假

肢,对于提升截肢者的生活自理能力及社会参与度

具有重要价值。
在智能假肢的研究中,基于 sEMG 控制的假肢

因其能够最大限度地还原人类上肢功能而成为研究

的热点[1] 。 随着模式识别技术在肌电假肢控制接

口中的应用,假肢的控制可以实现更加直接和多自

由度的动作[2] 。 卷积神经网络( CNN) 和长短期记

忆网络 ( LSTM) 作为主流深度学习模型,在基于

sEMG 信号的肌电假肢模式识别任务中得到广泛应

用[3] 。 通过设计改良的 CNN 架构,可以提升分类效

能,Geng 等[4]提出将原始 sEMG 信号编码为时频图

像,输入至 CNN 中进行分析,增强空间特征提取能

力;Zhai 等[5] 采用时延叠加频谱图丰富特征表示;
Wei 等[6]设计多级分解与融合策略训练 CNN 模型,
优化识别能力。 为更好地捕捉长期依赖关系,克服

梯度消失问题,引入了长短时记忆网络( LSTM) 模

型。 Bao 等[7] 构建端到端 CNN - LSTM 混合模型,



CNN 提取空间特征后由 LSTM 捕获动态时序模式;
Huang 等[8] 将 sEMG 信号编码为时频谱图,输入

CNN- LSTM 双分支网络,实现时空联合建模; Bai
等[9] 引入通道注意力机制,优化多通道 sEMG 的

CNN-LSTM 特征融合权重,显著提升了分类准确率

与模型鲁棒性。
近年来,Transformer 架构在自然语言处理与计

算机视觉领域取得进展,其应用已扩展至 sEMG 动

作识 别 研 究。 Montazerin 等[10] 建 立 CT - HGR
( Compact

 

Transformer - based
 

Hand
 

Gesture
 

Recognition) 框架,通过高密度 sEMG 空间拓扑编

码,提升跨主体识别鲁棒性;Montazerin 等[11] 采用

Transformer 模型,降低底层模型复杂性,解决模型训

练时间问题; Godoy 等[12] 设计多通道时序视觉

Transformer,优化灵巧操作动作的注意力权重分配。
相较于 CNN 和 LSTM,Transformer 通过全局自注意

力建立序列元素直接关联,在减少参数量的同时提

升训练效率。
然而,现有研究尚未充分发挥 Transformer 在实

时肌电信号处理中的潜力。
 

本文提出一种面向手部

肌电信号实时识别的时序注意力 Transformer 框架

( Temporal
 

Attentional
 

Transformer
 

for
 

sEMG
 

Gesture
 

Recognition,
 

TATEGR)。 该框架充分利用 Transformer
的高效时空特征捕获能力,旨在解决传统方法在训练

效率和实时响应方面的不足。 通过对比实验验证其

相对于传统 CNN 和 LSTM 模型在性能、训练效率和

实时性等方面的优越性。

1　 基于 Transformer 的实时手部运动识别

框架

1. 1　 基于 Transformer 基础架构与技术原理

Transformer 是 Vaswani 等[13] 2017 年提出的一

种深度学习模型,其在自然语言处理( NLP)领域实

现了突破性进展。 该模型摒弃了传统的循环神经网

络(RNN)和卷积神经网络( CNN)以多头自注意力

机制(Multi-Head
 

Self-Attention)为核心构建模型,
使得模型能够对输入序列中的每个位置的信息进行

全局建模,并且各个位置之间可以相互依赖、互相影

响,解决了 RNN 在长序列处理时存在的梯度消失或

爆炸问题。 自注意力权重的计算过程如下:

Attention
 

(Q,K,V) = Softmax
 QKT

　 dk
( ) V (1)

　 　 其中, Q 表示查询矩阵,用于衡量序列中每个

位置的元素与其他所有位置元素的相关性; K 表示

键矩阵,用于存储每个位置的关键信息; V 表示值

矩阵,包含了每个位置处的有用信息价值; KT 是键

矩阵的转置,与查询矩阵相乘,计算查询向量与所有

键向量的内积,体现了序列内部的位置关联度; dk

是向量维度,除以
　 dk 是为了归一化,防止由于向

量维度 dk 增大导致的注意力得分过大,保证了

Softmax 函数的稳定性。
除此 之 外, Transformer 还 引 入 了 位 置 编 码

(Positional
 

Encoding)来保留序列信息,以及前馈神

经网络(Feed
 

Forward
 

Network,
 

FNN)作为其全连接

层部分,进一步增强模型的表达能力。 这种分层并

行结构设计极大地提升了计算效率,尤其适合 GPU
等硬件加速设备进行高效训练。
1. 2　 肌电信号处理

本文数据预处理主要包括滤波降噪、标准化和

活动段提取。 根据 sEMG 信号的频谱能量分布特

性,使用三阶 10
 

Hz 巴特沃斯高通滤波器去除了电

缆带来的运动伪影和电气干扰。
由于不同受试者的解剖结构和生理条件各异,

多通道 sEMG 信号呈现显著的个体差异性。 为了减

弱这类差异对后续模式识别和分类精度的影响,本
文采用 Z-Score 标准化方法对各受试者的 sEMG 数

据进行了规范化处理,公式如下:
Z = (X - μ) / σ (2)

　 　 其中, X 代表原始信号值;μ 为信号的均值;σ
为信号的标准偏差。

该方法将不同量纲、不同大小的数据转换为无

量纲、零均值、单位方差的标准分数形式,确保跨受

试者数据的一致性。 为精准识别出 sEMG 信号中的

实质性活动片段,采用了一种自适应双阈值提取策

略代替传统的单一阈值识别方法。 本文设定一个动

态阈值系统,能够在不稳定的肌电信号环境中准确

捕捉到肌肉活动的有效时段计算方法。
(1)对单通道肌电信号差分处理,生成瞬时平

均能量序列 E:

E = 1
N∑

N

i = 1
[ sk( i + 1) -sk( i)] 2 (3)

　 　 其中, N 代表通道总数,本实验 N = 8,sk( i) 代

表第 i 通道在时刻 k 的采样值。
(2)计算 E 在窗口长度为 64

 

ms 内的能量均

值 S:

S = 1
L ∑

j +L-1

j = 1
E( j) (4)

　 　 其中, L 代表滑动窗口时长, 本实验 L = 64,

341第 11 期 郭珺,
 

等:
  

基于 Transformer 的实时手部运动识别框架



E( j) 表示由式(3)计算的时刻 j 的瞬时能量。
(3)基于 S 的中位数以及方差生成动态阈值

Th1 和 Th2:
Th1 = S,　 0 < c < Var(S) (5)
Th2 = Median(S),

 

　 c < 0 (6)
　 　

 

其中, Median(S) 代表能量均值 S 的中位数,
Var(S) 代表序列 S 的方差,c = S - Median(S)

 

。
1. 3　 用于肌电信号手部运动识别的 Transformer

框架

Transformer
 

架构虽源于自然语言处理领域,但
其核心的自注意力( Self-Attention)机制,因其强大

的序列建模能力,已被广泛应用于各类序列数据处

理任务,包括生物医学信号分析,如基于表面肌电信

号的手势识别。 在基于 sEMG 的手势识别任务中,
Transformer

 

架构的优势在于其对信号时空特征的全

局建模能力和动态特征提取能力。
本文设计用于肌电信号手势识别的时序注意力

Transformer 框架( TATEGR) 如图 1 所示。 首先,对
采集的肌电信号进行标准的数据预处理,包括但不

限于噪声去除、滤波处理、适当的时间分割以及特征

抽取,最终将原始生物电信号转化为符合模型输入

需求的时间序列数据集;其次,将预处理后的肌电信

号表示为一系列连续的向量序列。 在 TATEGR 框

架下,每一个时间步长的肌电特征均被映射为 L × N
的向量表示,构成输入序列,L 代表每个动作的肌电

信号序列长度,N 代表肌电信号采集通道数。 本文

中 L =4
 

096,N = 8。

多头自注意力

累加&归一化

逐位置前馈网络

累加&归一化

线性层

Softmax

输出概率

输入嵌入

输入

位置编码

Encoder

图 1　 用于肌电信号手势识别的时序注意力 Transformer 框架

Fig.
 

1 　 Temporal
 

attentional
 

Transformer
 

for
 

sEMG
 

gesture
 

recognition

　 　 TATEGR 将输入大小为 x ∈RL×N
 

的散斑图像分

成维度为 A × A的M个片段向量,即 xp ∈R(M×(A2·N)) ,

通过位置编码模块将这些片段向量映射到一个 W
维的嵌入空间中,并引入一个特定的位置嵌入向量

Epos, 该向量与每个片段向量相对应,旨在编码并保

留其原有的空间信息, 从而形成如下式所示的向

量 w:
w = [x1

pE,x2
pE,…,xN

p E] +Epos (7)
　 　 其中, E 表示在每个片段向量间嵌入的投影。

TATEGR 的核心组成部分———编码模块,对接

收到的向量 w 进行深入处理。 编码模块通过多头

自注意力机制(MSA)和逐位置前馈网络( Position-
wise

 

Feed-Forward
 

Networks,FFN)来学习向量 w 的

全局上下文表示。 MSA 通过 Q、K、V
 

3 组矩阵, 让

模型能够对输入序列中的任意两个位置进行比较并

学习两者之间的关联性。 FFN 对输入向量进行非线

性转换,并通过进一步提炼和丰富每个位置的特征

表达,增强了模型捕捉复杂依赖关系的能力。 编码

模块中第 i 个 MSA 层和 FFN 层的输入结果分别如

下式:
w′

i = MSA(Norm(w i -1)) +w i -1
 (8)

w i = FFN(Norm(w′
i)) +w′

i (9)
　 　 其中,Norm 表示归一化层; w i -1 为第 i 个 MSA
层输入的结果;w i 为第 i 个 FFN 层输出的结果。

在 Encoder 编码之后,模型将编码结果依次输

入线性层和归一化层,以将 Encoder 输出的高层次

抽象特征映射至预定义的手势类别空间,生成各类

别的概率分布估计,并最终判断手势动作类别。 分

类结果输出如下:

ĉ = argmax
 

(Softmax
 

(Ww + b)) (10)
　 　 其中, W 是线性层的权重矩阵;b

 

是偏置向量;

ĉ ∈ C 为最终判断的手势动作类别。
最后,此模型借助已标记的肌电信号手势数据

集进行训练优化,利用反向传播算法调整模型参数,
提高手势模式识别的准确性。

针对 sEMG 信号的动作分类任务中,首先通过

位置编码赋予信号的时间属性,随后运用自注意力

层来探索不同通道间及同一通道不同时刻信号间的

交互作用,有效识别关键肌肉活动区域和时段。 此

外,TATEGR 完全并行化的结构特点在大规模肌电

信号数据集上的训练更为高效,有利于提高模式识

别的准确率和实时性能。

2　 实验结果与分析

2. 1　 实验方案设计

皮肤表面肌电信号采集设备采用上海傲意生产
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的 gForcePro+肌电专业臂环,该臂环有 8 个肌电采

集通道,采样频率为 1
 

000
 

Hz。 实验采集 20 名受试

者 10 种手部运动模式下的 sEMG 信号,手部运动模

式如图 2 所示。 受试者根据屏幕提示做对应的动

作,每个动作保持 3
 

s,休息 3
  

s,重复 8 次,不同动作

休息间隔时间 3
 

min。 受试者尽可能快速、自然且一

致的完成手势任务。 在系统提示休息时,受试者放

松手臂肌肉。

放松 伸拇指 四指屈曲 伸食指 捏食指近指关节

伸食指和中指 五指抓 捏食指（内收）捏食指（外展） 三指捏

四指捏 四指伸展 拇指侧向内收 捏拳 五指伸展

五指捏 腕内旋 腕外旋 腕屈曲 腕伸展

图 2　 手部运动模式图

Fig.
 

2　 Hand
 

movement
 

pattern
 

diagram

　 　 实验设计方案如图 3 所示。 在采集并预处理

20 名受试者的数据之后,采取 64
 

ms 窗口长度和 64
 

ms 滑动步长来提取和组织数据,形成离线实验数据

集,将数据集以 8 ∶ 2 的比例分为训练数据与测试数

据,输入本文设计的 TATEGR 分类模型以及用于对

照的 CNN 和 LSTM 模型。 通过该离线实验数据集

对应的识别性能和混淆矩阵,检验 TATEGR 模型的

分类效能。 同时,通过个性化模型在线识别所展示

的识别性能和响应速度,验证了 TATEGR 模型在实

时识别效能和实时性。
　 　 所有参与对比的模型在训练时保持一致的超参

数配置:设置训练轮次为 30
 

Epoch,批量大小(batch
 

size)固定为 128,采用 Adam 优化算法,并初始化学

习率为0. 001。此外,均统一使用交叉熵损失函数

作为模型训练过程中的损失函数,以此来度量和比

较各个模型的分类性能。

基于个性化模型
进行实时识别

基于已有离线模型
训练个性化模型

离线训练
YATEGR

滑动窗口
提取特征

肌电信号
采集

提取
活动段

10Hz
高通滤波

标准化

预处理

实
验
准
备

离
线
识
别

在
线
识
别

图 3　 实验设计方案

Fig.
 

3　 Experimental
 

design
 

scheme

2. 2　 离线实验结果分析

CNN,LSTM 和 TATEGR
 

3 种模型的离线识别实

验结果见表 1。 TATEGR 模型在测试集上的准确率

达到 95. 99%,远超 CNN 模型的 78. 42%,同时也略

高于 LSTM 模型的 92. 01%,表明 TATEGR 在处理复

杂多运动模式识别任务时,具备更高的判别准确性;
其次,在召回率、精确率和 F1 分数这 3 个衡量分类

效果的重要指标上,TATEGR 同样得到了最好的结

果,分别为 95. 56%、 96. 54% 和 96. 05%, 证明了

TATEGR 在各类运动模式的识别上具有高覆盖率、
低误报率以及良好的综合性能;最后,在训练效率方

面,TATEGR 模型仅需 401
 

min 即可完成训练,不仅

显著优于 LSTM 模型,且比 CNN 模型更快,充分展

现了 TATEGR 在训练效率方面的显著优势,使得

TATEGR 在手势识别的大型数据集训练或者需要快

速迭代优化模型的场景中,展现出更强的竞争优势

和实用性。

表 1　 3 种不同模型离线识别结果

Table
 

1　 Offline
 

identification
 

results
 

of
 

three
 

different
 

models

模型 数据集 损失值 召回率 / % 准确率 / % 精确率 / % F1 训练时间 / min

CNN 训练集 0. 473
 

7 78. 57 83. 21 88. 57 0. 832
 

7 522

CNN 测试集 0. 644
 

9 73. 72 78. 42 84. 76 0. 785
 

9 N / A

LSTM 训练集 0. 233
 

9 91. 30 92. 01 93. 17 0. 922
 

3 2
 

583

LSTM 测试集 0. 390
 

5 86. 27 86. 53 83. 55 0. 848
 

9 N / A

TATEGR 训练集 0. 115
 

5 95. 56 95. 99 96. 54 0. 960
 

5 401

TATEGR 测试集 0. 326
 

9 85. 46 88. 76 91. 29 0. 882
 

8 N / A
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　 　 3 种模型识别结果混淆矩阵如图 4 所示。 CNN
模型在识别 9 个特定动作时准确率低于 90%,仅 3
个动作识别准确率超过 95%;LSTM 模型则有 4 个

动作识别率高于 95%,8 个动作低于 90%。 相比之

下,TATEGR 模型整体识别性能最优,除动作 1(伸

拇指)和动作 3(伸食指)外,其余动作识别准确率均

超过 90%,其中 8 个动作甚至达到 99%以上,但动

作 3 的识别率仅为 44%,可能是模型出现了一定程

度的过拟合现象。
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(a)CNN混淆矩阵 (b)LSTM混淆矩阵 (c)TATEGR混淆矩阵
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图 4　 3 种模型识别结果混淆矩阵

Fig.
 

4　 Confusion
 

matrices
 

of
 

the
 

recognition
 

results
 

of
 

three
 

models

　 　 TATEGR 训练集各评价指标见表 2。 由表 2 可

知,所有受试者离线准确率均达到了 97%以上,在
召回率和精确率稳定的同时也呈现出较高水平。 该

数据表现与 TATEGR 离线识别结果较为一致,有效

验证了使用新增受试者数据以更新并训练已有模型

的可行性,而且减少了离线训练的时间,提高了整体

训练效率。

表 2　 TATEGR 训练集各评价指标结果

Table
 

2　 Training
 

set
 

performance
 

metrics
 

results

实验者编号 损失值 准确率 / % 召回率 / % 精确率 / % F1

1 0. 047
 

7 99. 67 99. 56 99. 78 0. 996
 

7
2 0. 176

 

0 97. 45 94. 79 98. 73 0. 967
 

2
3 0. 071

 

4 99. 44 98. 66 99. 66 0. 994
 

6
4 0. 087

 

2 98. 57 97. 59 99. 11 0. 983
 

4
5 0. 028

 

5 99. 89 100. 00 99. 89 0. 999
 

4
6 0. 067

 

8 98. 90 98. 57 99. 11 0. 988
 

4
7 0. 064

 

8 99. 12 93. 36 99. 45 0. 989
 

0
8 0. 045

 

1 99. 89 99. 89 100. 00 0. 999
 

5
9 0. 083

 

7 99. 22 97. 66 100. 00 0. 988
 

1
10 0. 164

 

3 97. 97 95. 50 99. 72 0. 970
 

8
11 0. 053

 

3 99. 01 98. 91 99. 12 0. 984
 

9
12 0. 111

 

2 98. 79 96. 91 99. 10 0. 979
 

9
平均值 0. 083

 

4 98. 99 98. 00 99. 39 0. 986
 

8

2. 3　 在线实验结果分析

12 位受试者各手势类别的平均准确率及其标

准差如图 5 所示。 由图 5 可知,12 位受试者的各动

作的平均准确率为 93. 74%,除伸食指和中指(动作

5),五指伸展(动作 14),五指捏(动作 15)外,其他

动作模式的实时识别率均达到了 90%以上。 对于

这 3 种动作准确率相对较低的现象,推测其原因在

于以上动作复杂的指尖伸展运动,尤其是涉及到拇

指的活动,由于拇指的运动控制涉及的手部肌肉更

为丰富,故此在表面肌电图(sEMG)信号中,这些动

作产生的信号强度较大且相似性较高,从而使得其

它手指细微动作的肌电信号特征可能被掩盖,降低

了识别系统的分辨能力,即当 sEMG 信号提供的动

作差异化特征不够鲜明时,特别是在涉及手指复杂

伸展动作的情况下,运动模式的识别误差率可能会

显著增加。
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图 5　 各手势类别的平均准确率及其标准差

Fig.
 

5　 Average
 

accuracy
 

and
 

standard
 

deviation
 

for
 

each
 

gesture
 

category

3　 结束语

本文针对肌电假肢实时控制需求,构建了一种用

于肌电信号手势识别的时序注意力 TRANSFORMER
框架(TATEGR),以提升智能假肢的功能性和实时

性。 在对既有 CNN 和 LSTM 模型的深入探讨和借鉴

基础上,TATEGR 通过全局自注意力机制有效解决了

时序依赖限制,降低了模型复杂度并提高了训练效

率。 实验结果证实,在离线模式识别场景中,TATEGR
识别准确率达到 95. 99%,各项评价指标显著优于

CNN 和 LSTM 模型,并对各类动作的识别能力有了实

质性增长。 在线实时识别测试中,TATEGR 模型平均

识别准确率显著提升,且平均时延降至 145
 

ms,展现

出在肌电假肢运动模式识别中较强的实时性和低延

迟特性,具有一定的临床应用和社会价值。
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