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Abstract; Surface electromyography (SEMG ) —based prosthetic gesture recognition has emerged as a significant research focus in
intelligent prosthetic control due to its promising application prospects. To address the limitations of traditional Convolutional Neural
Networks (CNNs) and Long Short—Term Memory (LSTM) networks in training efficiency and real-time performance, this study
introduces the Transformer architecture into the task of real —time hand motion recognition using SEMG signals, developing a
transformer—based real —time hand motion recognition framework. This framework aims to leverage the transformer’s distinctive
capability for capturing spatiotemporal features to enhance the performance of real —time sEMG—based hand motion recognition.
Through comparative experiments, this paper demonstrates the framework's superiority over CNN and LSTM models in terms of
recognition accuracy, training efficiency, and real-time performance.
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Fig. 1 Temporal attentional Transformer for sEMG gesture

recognition
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Fig. 2 Hand movement pattern diagram
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Table 1 Offline identification results of three different models

FiA! il sE i 2% B AW/ % W/ % KA % Fl IR ]/ min

CNN IS 0.4737 78.57 83.21 88.57 0.8327 522

CNN AR 0.644 9 73.72 78. 42 84.76 0.7859 N/A

LSTM Il it 0.2339 91.30 92.01 93.17 0.9223 2 583

LSTM AR 0.390 5 86.27 86.53 83.55 0.848 9 N/A
TATEGR PIEE RS 0.1155 95.56 95.99 96. 54 0.960 5 401
TATEGR e 0.326 9 85. 46 88.76 91.29 0.882 8 N/A
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Fig. 4 Confusion matrices of the recognition results of three models
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Table 2 Training set performance metrics results

ST Bk AE WM/ % B3,/ % K%/ % F1
1 0.047 7 99. 67 99. 56 99.78 0.996 7
2 0.176 0 97.45 94.79 98.73 0.967 2
3 0.071 4 99. 44 98. 66 99. 66 0.994 6
4 0.087 2 98. 57 97.59 99.11 0.983 4
5 0.028 5 99. 89 100. 00 99. 89 0.999 4
6 0.067 8 98.90 98.57 99.11 0.988 4
7 0.064 8 99. 12 93.36 99. 45 0.989 0
8 0.045 1 99. 89 99. 89 100. 00 0.999 5
9 0.083 7 99.22 97. 66 100. 00 0.988 1
10 0.164 3 97.97 95.50 99.72 0.970 8
11 0.053 3 99.01 98.91 99. 12 0.984 9
12 0.1112 98.79 96. 91 99. 10 0.979 9
- E 0.083 4 98.99 98. 00 99.39 0.986 8
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Fig. 5 Average accuracy and standard deviation for each gesture category
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