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Research on lightweight dense pedestrian detection algorithm
based on improved YOLOv8n

JIANG Naiqi, CHEN Jun, CHEN Fang, MENG Weigiang, SHI Haoming

(College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China)

Abstract; In response to the difficulties of dense pedestrian detection and the resource limitations of detection model deployment,
this paper proposes a lightweight dense pedestrian detection model based on YOLOv8n improvement. Based on the YOLOv8n object
detection model, a lightweight MobileViT is used instead of the original backbone network to achieve a balance between local and
global dependencies in image feature extraction; Introducing the BRA attention mechanism to enhance the detection model’s ability
to capture long —range contextual dependencies while ensuring lightweighting; Adding DyHead to enhance the sensitivity of the
detection head to multi—scale pedestrian targets and changes in pedestrian spatial structure, and to enable the detection model to have
more flexible dynamic adjustment capabilities. The experimental results on the CrowdHuman pedestrian dataset show that compared
to YOLOv8n, the improved model proposed in this paper has a 1. 67 improvement in JI index, with only 3. 98 M of parameters and
6.32 GFLOPs of computation, which can meet the practical needs of engineering applications.

Key words: dense pedestrian detection; YOLOv8; MobileViT; BRA attention mechanism; DyHead

G RAGIAN B T AR, B KRR B e Tt T~ 3L
5 R B

AT NN RATE N SV 7557 T AT
Fr NI, AT NS INAT 55 A9 2800 SUAR 55 AP AETE
ZAERMPE, T AR R ST ASTTAZ

0 31 F

TEANAS I 6 11 058 25 37 7 R Ut % 24 25 A A A
X A 1 DX, R A Sk A W R £ X AR ST
SR | DL TE N G 85 B ekt B2 4

SR HONRE 0 & BEAY 22 2 P AR, AN TR
I R P R, A\ TS Ry G D AR AT TR A
AR, MR AE P e o, M AT N B AR A I 4
AR AR IR R (8 i 205 ) Bp ] UPRIE 42 K

EZ BN 22)948(1999—) 55 Wit | ERERFTE 7 1) - HEEHLLSE ; A

(] AR A ELBE Y 2 5 T BRI ARE TR B R A Tk 5 T
PERRE RIS R 225, AT N 2R 2 U]
R P15 3 s 040 52 24 e I T, o ARG A R ) B2 ol 1
ZACYE RN PRIESE T 5 S 200 4 5 5 A I A 72

F5(1998—) , 5 Wit BG5BT Sl A TR,

BEEE: K R1978—) B Wik BIEUER, FEW57 0] WIKINIE S . Email : 56851@ qq. com,

s BEA . 2024-02-25

P EFRE LS ¢+ 44+ 5 5 A




138 oo ®m M5 M OH

ERRES

AR S il 8 I 24 2% SRR R 5 R SR, S BB BN
JE AR AT

A AT AR B4 4E | 40 Caltech | CityPersons
AIKITTE A7 NBHE SR A7 N AR, JCI5 6 A AT
KGN AT 55 T 2K, X F e #L2s B) & A CrowdHuman
AT NBEAE A 2 AT N0 R mAT A
WA AT NP R . o T
AT S () 388 £ 18] B, Wang %% 48 ) Repulsion
Loss SEAE0 S R, 8 328 W2 75 | 50000 AT 0 Xof 1 L S ATE
(A, R HE T T AE A & L SCAE A 6 &, DA
SR AT AR BE ) . MR 4E CrowdHuman (4
PR AEAY AT DUAERRTE , Huang 2550 452 M AR 21k X 3
E |2 ONEL K R D EER 2 b € 1O ARS8 87l g
JEACPR ARG T T A BRI HE , b T RGE
1, AT s AR AP ) e b R o i R 1Y
FENSER], Chu'* XA 42 BUHE #5390 0 — 2 v] B
JEHF RS

AR ST XoF 285 AR AT NG I F18) X s R 0 A5 A5 2 e
AR R TRIEL, LA YOLOv8n H A6 452 21 g BL i,
i P24 5] Mobile VT [ 25 5 AR AR 2R 11 1 ) 2%
( Backbone) , SZ IR UG RFAE (1) g SCEE B, 445 Sy il
2 R M OC ZR P-4 5 78 5 T M 46 1Y R IS I BRA
(Bi-level Routing Attention ) 3 & J1#Lii , 764~ K&
HEIN 28 Z A ET R T, 38 58 32 R 26 09 4R Ik B2
RE T, ARSI A AR A X B B F T SO fr) 47 4K
RE 1 5 75 H AR G A5 B % 60 3k (Head ) F823%5
DyHead ( Dynamic Head ) gl 25 K50 3k | A58 4545 5))
SVRERYBE ST, LA nSCR B4 e BB AR AT
YNGR

1 YOLOvS Bfri& ity

YOLOv8 H A5 A6 A5 Y J2: i Ultralytics 2 ] 7F
YOLOvS JitA iy 38 aih |, 52 i A9 AS , /2 YOLO
( You Only Look) A4k FIZEA BIA T HZH
TG IR R B 2 2] LG A B 48 R 18 O i T 1% &
HIrRikF] T SOAT(State Of the Art) FIRLCIR: , 2% 45
FtnpE 1 iR,

YOLO F A1 1T AR [/ T Two—Stage
TN Bl KA AR YOLO 4 i —4~ One—Stage 15
FRU RS JE RIASE TR (g G 0 Sk 5 0 A 8 15 ) o
i % RGBT W) R A TS M B,
YOLOv8 #1175 FfAS [A] R~ A A A8 | 36 3 9 75 1)
LR VR BE AR IR | T 4% 58 132 440 TSt 1R - R0 I 4% 3 1 4
R PR S BB ARY ) Bl 4, LA S IAN [R) RS AR AR ()

st Al LA A R s AR B AT 55 T oK

AR
CBS
CBS
C2f Neck Head
CBS f Decoupled Head
C2f Concat
CBS Upsample CBS
Cc2f Concat
C2f Concat C2f Decoupled Head
CBS Upsample CBS
C2f
SPPF Concat
Backbone C2f Decoupled Head

1 YOLOv8 R# 4514
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Table 1 Results of ablation experiment
YOLOv8n MobileViT BRA DyHead JI/ % AP/ % MR/ % Params/M  FLOPs/G
VvV X X X 76.03 85.84 58.14 3.01 8. 12
Vv v x x 77.22 86. 84 48.38 2.72 6.05
Y4 Vv Vv X 77.37 87.03 48.58 2.76 6.15
vV Vv Vv Vv 77.70 87.13 47.97 3.98 6.32
3.5 HEIXFLE LIS .
4 HHRIE

R T B R TG YOLOv8n 1 4% it 7Y
BEEAT NI AN 5 A A H AR ALY 51 7% L
SCHG, IR A R LA 2, RS BR A A I SR a1 4
JE[%y
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Table 2 Results of comparative experiment

LAY /% AP/%  MR/% Params/M FLOPs/G
YOLOvSn 70.26  81.67  55.10 1.76 4.17
YOLOvSs  75.07  85.59  48.26 7.02  15.83
YOLOv6n 76.79  85.58  59.24 4.30  11.00
YOLOv7tiny 77.65  86.97  48.37 6.01  13.09
CrowdDet  82.30  90.70  41.40  41.35  208.80
ARCHR 77.70  87.13  47.97 3.98 6.32
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Fig. 4 Detection rendering
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