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Flotation froth stability estimation based on time series
significant target segmentation
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Abstract: In order to achieve an accurate quantitative description of flotation froth surface stability, infrared thermal images are
performed on the froth surface, and the unstable bubble detection is converted into infrared salient target segmentation, and a
flotation froth stability estimation method based on time-series infrared salient target deep learning segmentation is proposed. First,
the VGG-16 network is improved by using dilated convolution, and the attention mechanism is added to the VGG-16 network to
extract the initial salient information, which is then inputted into the ConvLSTM network to achieve the initial localization of time—
series infrared salient regions; second, a residual refinement network with a U-shape encoder—decoder structure is constructed to
learn the residuals between salient maps and the ground truth in order to improve the salient region’s edge details to realize the
refinement segmentation of time series salient targets; finally, the froth stability is calculated according to the results of salient
targets segmentation, and the deviation and threshold of froth stability on time series under different working conditions are counted.
The experimental results indicate that the proposed method achieves favorable salient object segmentation performance on both the
flotation foam infrared video dataset and the RGB-T234 public dataset. The average segmentation intersection over union under
different operating conditions is 85.27%, the average pixel accuracy is 90. 67% , and the average segmentation error rate is 8.2%.
The temporal salient object segmentation accuracy surpasses existing methods, demonstrating a certain improvement. The method
also achieves a quantitative description of foam stability, laying the foundation for subsequent recognition of flotation production
conditions and early fault warning.
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Fig. 1 Flotation froth dual-modality image
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Fig. 2 Overall network framework for time—series significant target segmentation
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Fig. 3 Comparison of ordinary convolution and dilated convolution
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Fig. 4 Improved VGG-16 network based on dilated convolution
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Fig. 9 Over—flotation infrared froth segmentation results
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Fig. 10 Normal flotation infrared froth segmentation results
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Fig. 11 Under—flotation infrared froth segmentation results
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Table 1 Comparison of significant target segmentation results in froth infrared video
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BASNet 0.697 7 0.903 1 0.096 8 0.798 5 0.901 1 0.089 6 0.846 9 0.890 5 0.084 7
Yolact 0.8314 0.901 4 0.093 8 0.834 9 0.8659 0.0853 0.839 8 0.8830 0.088 2
CrossVIS ~ 0.8257 0.907 5 0.094 9 0.846 3 0.905 6 0.089 2 0.849 5 0.885 6 0.084 9

AL 0.8356 0.915 8 0.081 3 0.866 4 0.894 5 0.087 8 0.8551 0.909 7 0.076 9
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Table 2 Ablation experiment

LY ToU PA Error
CNN+ConvLSTM 0.6421 0.7654 0.2159
CNN+ConvL.STM+SAM 0.6517 0.7782 0.1876

CNN+ConvL.STM+Residual refinement 0.764 9 0.8392 0.1354
AL

JE T CNN+ConvI.STM 5 CNN+ConvI.STM+
SAM 1) 3 PR 8 A5 AT DL — IR B E 1 2 7 SAM
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Fig. 12 Froth stability of different performance
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Fig. 13 Comparison of actual and predicted stability under three performance
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Table 3 Prediction performance statistics of froth stability under

iR 5

three performance

Image type RMSE MAE R?

IEH TR 0.591 6 0.5155 0.8417
KIFIE 0.5558 0.464 9 0.867 9
FURES 0.557 1 0.479 2 0.859 0
T HH 0.568 2 0.486 5 0. 856 2
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