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摘　 要:
 

为实现浮选泡沫表面稳定性的准确定量描述,对泡沫表面进行红外热成像,将不稳定气泡检测转换为红外显著目标分

割,提出一种基于时序红外显著目标深度学习分割的浮选泡沫稳定度估计方法。 首先,采用空洞卷积改进 VGG-16 网络,并将注

意力机制添加到 VGG-16 网络中用以提取初始显著信息,输入至 ConvLSTM 网络中以实现时间序列红外显著性区域的初定位;
其次,构建 U 型编码器-解码器结构的残差细化网络,深度学习显著图与真值之间的残差以改善显著区域的边缘细节,实现时序

显著目标的精细化分割;最后,根据显著目标分割结果计算泡沫稳定度,并统计不同工况下泡沫稳定度在时间序列上的偏离度和

异常阈值。 实验结果表明,本文方法在浮选泡沫红外视频数据集和公共数据集 RGB-T234 上均能取得较好的显著目标分割效

果,不同工况下的平均分割交并比为 85. 27%、平均像素准确率为 90. 67%、平均分割错误率为 8. 2%,时序显著目标分割精度较现

有方法有一定提升,实现了泡沫稳定性的准确定量描述,为后续的浮选生产工况识别和故障早期预警奠定基础。
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Abstract:
 

In
 

order
 

to
 

achieve
 

an
 

accurate
 

quantitative
 

description
 

of
 

flotation
 

froth
 

surface
 

stability,
 

infrared
 

thermal
 

images
 

are
 

performed
 

on
 

the
 

froth
 

surface,
 

and
 

the
 

unstable
 

bubble
 

detection
 

is
 

converted
 

into
 

infrared
 

salient
 

target
 

segmentation,
 

and
 

a
 

flotation
 

froth
 

stability
 

estimation
 

method
 

based
 

on
 

time-series
 

infrared
 

salient
 

target
 

deep
 

learning
 

segmentation
 

is
 

proposed.
 

First,
 

the
 

VGG-16
 

network
 

is
 

improved
 

by
 

using
 

dilated
 

convolution,
 

and
 

the
 

attention
 

mechanism
 

is
 

added
 

to
 

the
 

VGG-16
 

network
 

to
 

extract
 

the
 

initial
 

salient
 

information,
 

which
 

is
 

then
 

inputted
 

into
 

the
 

ConvLSTM
 

network
 

to
 

achieve
 

the
 

initial
 

localization
 

of
 

time-
series

 

infrared
 

salient
 

regions;
 

second,
 

a
 

residual
 

refinement
 

network
 

with
 

a
 

U-shape
 

encoder-decoder
 

structure
 

is
 

constructed
 

to
 

learn
 

the
 

residuals
 

between
 

salient
 

maps
 

and
 

the
 

ground
 

truth
 

in
 

order
 

to
 

improve
 

the
 

salient
 

region′s
 

edge
 

details
 

to
 

realize
 

the
 

refinement
 

segmentation
 

of
 

time
 

series
 

salient
 

targets;
 

finally,
 

the
 

froth
 

stability
 

is
 

calculated
 

according
 

to
 

the
 

results
 

of
 

salient
 

targets
 

segmentation,
 

and
 

the
 

deviation
 

and
 

threshold
 

of
 

froth
 

stability
 

on
 

time
 

series
 

under
 

different
 

working
 

conditions
 

are
 

counted.
The

 

experimental
 

results
 

indicate
 

that
 

the
 

proposed
 

method
 

achieves
 

favorable
 

salient
 

object
 

segmentation
 

performance
 

on
 

both
 

the
 

flotation
 

foam
 

infrared
 

video
 

dataset
 

and
 

the
 

RGB-T234
 

public
 

dataset.
 

The
 

average
 

segmentation
 

intersection
 

over
 

union
 

under
 

different
 

operating
 

conditions
 

is
 

85. 27%,
 

the
 

average
 

pixel
 

accuracy
 

is
 

90. 67%,
 

and
 

the
 

average
 

segmentation
 

error
 

rate
 

is
 

8. 2%.
 

The
 

temporal
 

salient
 

object
 

segmentation
 

accuracy
 

surpasses
 

existing
 

methods,
 

demonstrating
 

a
 

certain
 

improvement.
 

The
 

method
 

also
 

achieves
 

a
 

quantitative
 

description
 

of
 

foam
 

stability,
 

laying
 

the
 

foundation
 

for
 

subsequent
 

recognition
 

of
 

flotation
 

production
 

conditions
 

and
 

early
 

fault
 

warning.
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0　 引　 言

浮选指的是在浮选机内矿物与空气中的微气泡

发生碰撞并粘附在一起,利用矿物与杂质的亲疏水

性质,使可浮性高的固体随气泡上浮至泡沫层,从而

将目标矿物从具有复杂成分的矿石中分离出来的一

种选矿方法[1] 。 浮选过程中气泡的生成和破裂可

有效反映矿物含量,通过图像分割技术,可以对浮选

过程中新生成的气泡以及崩塌的气泡进行检测,这
一技术在计算机视觉和工业生产等领域具有广泛应

用前景[2-3] 。 泡沫稳定性定义为泡沫中气泡抵抗合

并和破裂的能力,是浮选性能的关键驱动因素,有助

于确定浮选过程的品位和回收率[4-5] 。 因此,对浮

选泡沫连续视频帧中合并及破裂气泡的准确分割能

客观描述浮选气泡的稳定性,对浮选生产指标和工

艺改善具有重要意义。
目前,国内外学者们提出了多种不稳定气泡的

检测方法,Jahedsaravani 等[6] 根据气泡生成与消散

过程中所形成的阴影之间的差别,结合气泡运动的

速度,实现对崩塌泡沫的判别,但该方法的检测准确

度会受到气泡变形和光照的影响,造成气泡的亮点

或高亮边缘的误判;Nkahaei 等[7] 采用分水岭算法,
研究不同工艺参数下浮选泡沫形变规律,从而分割

出气泡的大小,但此方法同样受光照影响,在产生合

并或破裂气泡时,易出现过分割或欠分割的情况;廖
一鹏等[8]首次对泡沫进行红外热成像研究,发现气

泡产生崩塌或合并后释放出热量,相比周围气泡的

温度高,热成像后呈现出高亮的显著区域,对不稳定

气泡具有直观的展现效果;施雯玲等[9] 使用多尺度

变换域目标分割方法实现了泡沫红外图像中的崩塌

或合并气泡分割,但是该方法基于单张图像进行泡

沫表征特征提取,缺乏时间上连续性,难以准确地对

浮选性能指标进行预测。 Zhang[10] 通过提取泡沫视

频的表观特征与浮选性能指标进行建模,证实了泡

沫视频检测方法可获得比泡沫图像检测方法更为鲁

棒的泡沫表层视觉描述,表征能力更强。 因此,本文

通过对泡沫红外视频图像进行显著区域检测,实现

对合并及破裂气泡的分割,根据分割结果进行泡沫

稳定性的评估。
近年来,对红外视频图像目标分割方法的研究

较多,Chen 等[11] 对视频和其所支持的图像之间的

关系进行建模,提出一种小样本目标视频分割方法,
在对视频中的目标进行分割时,只需要在少数的图

像中标记其类别,但为了提高精度所使用在线学的

方法会涉及许多不必要的特征对,易造成背景噪声

的干扰;Qin 等[12]提出一种边缘显著性检测模型,该
模型使用混合损失函数关注图像多个不同层级的显

著性目标的边缘信息,但该模型较难关注到帧与帧

之间的时序信息从而造成分割精度降低;Liu
 

等[13]

对图像实例进行实时分割,将分割任务划分为目标

检测和分割两个并行任务,同时在一张图片的多个

类别之间共享原型对象,但出现运动模糊的图像帧

时易出现目标检测错误,从而出现过分割; Yang
等[14]提出一种交叉学习的方法用于视频实例分割,
使用像素来定位视频帧中的相同目标区域,并且有

效利用连续视频帧之间的信息增强实例,同时能够

抑制背景和无关信息,提高分割精度,然而该方法依

赖于大型数据集的训练,造成人工标注成本剧增。
本文提出了一种基于时序红外显著目标深度学

习分割的浮选泡沫稳定度估计方法,将浮选泡沫稳

定性评估转化为红外显著目标分割问题。 首先,采
用空洞卷积改进 VGG-16 网络,并将注意力机制添

加到 VGG-16 网络中,以提取初始显著信息,然后

输入至 ConvLSTM 网络实现时间序列红外显著性区

域的初定位;其次,构建 U 型编码器-解码器结构的

残差细化网络,深度学习显著图与真值之间的残差,
改善显著区域的边缘细节,实现时序显著目标的精

细化分割;最后,根据显著目标分割结果计算泡沫稳

定度,并统计不同工况下泡沫稳定度在时间序列上

的偏离度和异常阈值。

1　 基于时序深度网络的红外显著目标分割

为减少光照对泡沫图像分割的影响,提高分割

精确度,对浮选槽表面流动的泡沫进行红外热成像

如图 1 所示。 相较于可见光泡沫图像如图 1(a),经
过红外热成像后的泡沫能够直观展现出合并及破碎

泡沫如图 1( b),对气泡稳定性具有直观的展现效

果。 因此,可通过对红外泡沫图像进行显著目标检

测,实现不稳定气泡的分割。

(a)
 

可见光图像　 　
 

(b)
 

红外热成像

图 1　 浮选泡沫双模态图像

Fig.
 

1　 Flotation
 

froth
 

dual-modality
 

image

　 　 显著目标检测是快速找出图像视频等视觉数据

中最吸引人的地方,基于深度学习的静态显著性模
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型,凭借神经网络强大的端到端学习能力取得了很

好的效果,视频蕴含着更丰富的视觉信息[15] 。 因此

本文构建时序深度神经网络模型提取红外泡沫视频

的深度视觉特征,从而更好地进行显著性检测,其时

序显著性检测及目标分割的网络结构框架如图 2 所

示。 该分割网络总体上由时序显著性区域定位和显

著目标精细化分割两部分组成:将注意力机制添加

到空洞卷积改进的 VGG-16 网络中,提取初始显著

信息,然后输入至 ConvLSTM 网络,实现时序显著性

区域的初定位;构建 U 型编码器-解码器结构的残

差细化网络,深度学习显著图与真值之间的残差,改
善显著区域的边缘细节,实现时序显著目标的精细

化分割。

红外视频帧 CNN+Attention ConvLSTM 时间序列
显著区域

残差细化网格 精细化分割

时间序列显著区域检测 空间显著目标优化

图 2　 时序显著目标分割整体网络框架

Fig.
 

2　 Overall
 

network
 

framework
 

for
 

time-series
 

significant
 

target
 

segmentation

1. 1　 融合监督注意力机制的改进 VGG-16 网络

Huang 等[16]应用两种不同图像尺度的深度神

经网 络 组 成 的 显 著 性 模 型 检 测 架 构, 比 较 了

AlexNet、VGG-16 和 GoogleNet 的检测效果,说明了

VGG 网络用于显著性检测的优势,但对输入图像进

行较大的缩放对预测精度造成一定的影响。 因此,
本文基于空洞卷积改进 VGG-16 网络模型,并结合

监督注意力机制构建初始显著信息提取网络。
1. 1. 1　 基于空洞卷积的 VGG-16 网络改进

VGG-16 网络由 13 个卷积层和 3 个全连接层

组成。 卷积层分为 5 个卷积块,每个卷积块后面都

是步幅为 2 的最大池化层。 VGG-16 的深度卷积层

是提取图像特征表示的有效方法,然而池化层可能

会导致图像语义信息的丢失,为了克服这一局限性,
本文将空洞卷积引入特征提取网络。 较普通卷积不

同,空洞卷积在卷积中引入扩张率超参数,该参数定

义了卷积核在计算时各值之间的距离[17] 。 空洞卷

积的具体计算方式:

y( i) = ∑
k
x( i + rk)w(k) (1)

　 　 其中, x 表示输入特征映射; y 表示输出特征映

射; w 表示滤波器; r 为空洞卷积中采样输入信号的

步幅。
以 3×3 卷积为例,普通卷积和空洞卷积之间的

区别如图 3 所示。 3 幅图是相互独立进行卷积的,
大框表示输入图像,感受野默认为 1,红色的圆点表

示 3×3 的卷积核,蓝色地带表示卷积后的感受野。
可以看出图 3(a)为普通卷积的过程,卷积后的感受

野为 3;图 3(b)为 r = 2 的空洞卷积,卷积后的感受

野为 5;图 3(c)为 r = 3 的空洞卷积,卷积后的感受

野为 8。 可见同样一个 3 × 3 的卷积,却可以起到

5×5、7×7 等卷积的效果,空洞卷积在不增加参数量

的前提下,却可以增大感受野。

(a)
 

r = 1　 　 　 　 　
  

(b)
 

r = 2　 　 　
   

(c)
 

r = 3
图 3　 普通卷积与空洞卷积对比

Fig.
 

3　 Comparison
 

of
 

ordinary
 

convolution
 

and
 

dilated
 

convolution

　 　 假设空洞卷积的卷积核大小为 k, 空洞数为 d,
则其等效卷积核大小为 k′, 例如 3×3 的卷积核,则 k
= 3,等效卷积核大小公式为:

k′ = k + (k - 1) × (d - 1) (2)
　 　 当前层的感受野 RF i +1 的计算公式为:

RF i +1 = RF i + (k′ - 1) × (d - 1) (3)
　 　 其中, RF i 表示上一层的感受野, k′ 表示卷积核

的大小。
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Si 表示之前所有层的步长的乘积,公式为:

Si = ∏ i

i = 1
Stridei (4)

　 　 其中, Stridei 表示第 i 层的步长。
将 VGG-16 卷积层的卷积核的大小设置为 5,

将空洞大小设置为 3,所有层的步长设置为 1,根据

上述公式可以求得 17×17 的感受野,为保留更多的

空间细节,删除第 5 个池化层( pool5),改进后的网

络结构如图 4 所示,红色虚线边表示相对于原始网

络修改的层。
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图 4　 基于空洞卷积改进的 VGG-16 网络

Fig.
 

4　 Improved
 

VGG-16
 

network
 

based
 

on
 

dilated
 

convolution

1. 1. 2　 融合监督注意力机制的 VGG-16 网络

本文采用监督注意力模块(Supervision
 

Attention
 

Module,
 

SAM)以增强帧内显著性特征,较之前注意

力模块不同的是此模型中的注意力模块能够对静态

显著性信息进行编码,并且通过有监督的方式在静

态显著性数据集中进行学习。 本文监督注意力模型

如图 5 所示,监督注意力机制建立在 VGG - 16 的

Conv5-3 层上,以空间维度为 W × H,通道数为 C 的

特征图 Img_in 作为 SAM 模块的输入并通过一个

1×1 的卷积核得到残差图,然后将 RS 与原图相加得

到增强图像(Img_EH),并计算增强图像( Img_EH)
与 GroundTruth 之间的损失,通过 3×3 卷积 Conv3 与

Sigmoid 激 活 函 数 构 建 像 素 注 意 力 机 制, 生 成

Attention
 

Maps, 再通过 3 × 3 卷积 Conv1 以及与

Attention
 

Maps 点乘的方式重新校准 Img_in,增大有

用特征,弱化无用特征,最后将该注意力特征与初始

输入的 Img_in 相加,得到经过注意力增强的 Img_
out,作为下一个阶段的输入。

原图

Add
Multiply
Sigmoid
Propogation

Conv

Conv
LOSS

Img_EH

Attention
maps

Conv

Conv

Img_in
W?H?C

W?H?C

图 5　 监督注意力模型

Fig.
 

5　 Supervised
 

attention
 

model

1. 2　 基于 ConvLSTM 的时间序列显著区域检测

为充分捕捉时序上的动态特征信息,本文在初

始显著信息提取的基础上,采用 LSTM( Long
 

Short-
Term

 

Memory,LSTM)网络提取泡沫红外视频帧间的

时序显著区域。 为了克服 LSTM 处理三维信息的不

足,ConvLSTM 将 LSTM 中的 2D 的输入转换成了 3D
的张量,ConvLSTM 利用 3 个卷积门即输入、输出和

遗忘门来控制单元内的信号流,ConvLSTM 输出一

个隐藏状态 Ht, 并使用一个记忆单元 C t 来控制状

态的更新和输出, it 为 t
 

时刻的输入门激活值,公式

为:
　 it = σ(Wi

X∗X t + Wi
H∗Ht -1 + Wi

C°C t -1 + bi)
(5)

其中, X t
 为输入;Wi 为卷积权重矩阵;∗表示卷

积运算符;° 代表哈达玛积; b 为偏置向量; σ 为

Sigmoid 激活函数。
ft 和 ot 是 ConvLSTM

 

模型中的遗忘门和输出门,
公式为:

ft = σ(Wf
X∗X t + Wf

H∗Ht -1 + Wf
C°C t -1 + bf)

(6)
ot = σ(Wo

X∗X t + Wo
H∗Ht -1 + Wo

C°C t + bo)
(7)

　 　 其中,双曲正切函数 tanh(x)是 ct 的激活函数,
公式为:
C t = ft°C t -1 + it°tanh(Wc

X∗X t + Wc
H∗Ht -1 + bc)

(8)
　 　 对于卷积而言,如果卷积核大,捕捉到的信息偏

向于更快的动作,如果卷积核偏小,捕捉到的信息偏

向于更慢的动作,因此 ConvLSTM 在状态传递时将

全连接操作改为卷积操作,更有利于捕捉空间信息。
将融合注意力机制的 VGG-16 网络提取的初始显

著信息输入至 ConvLSTM 网络,实现时序显著性区

域的检测。
1. 3　 基于残差细化网络的显著目标细分割

经过 ConvLSTM 网络检测的显著区域存在边界
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模糊等问题,本文构建残差细化网络对显著区域边

缘进一步优化,通过深度学习显著图 scoarse 与 Ground
 

Truth 间的残差 sresdual 进一步优化显著边缘得到精细

化分割图,公式为:
srefined = scoarse + sresdual (9)

　 　 残差细化网络结构如图 6 所示,采用 U 型编码

器-解码器的结构,并使用桥阶层进行连接。 编码

器与解码器大致对称并且均含有 4 个阶段,每个阶

段都含有一个 64 核的 3×3 卷积层,每个卷积层后面

都含有一个批量归一化层和一个 ReLU 激活函数,
编码器使用最大池化层进行下采样,而解码器使用

双线性插值进行上采样。 桥接层与一个阶段结构相

同,即包含一个 64 核的 3×3 卷积层,后面跟着一个

批量归一化层和一个 ReLU 激活函数。 将时间序列

显著区域图通过残差细化网络进行显著目标边缘优

化后输出最终分割图。
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图 6　 残差细化网络结构

Fig.
 

6　 Residual
 

refinement
 

network

`

2　 泡沫稳定度估计及异常评判

本文利用时序红外显著目标分割结果估算泡沫

稳定度 S, 将红外泡沫视频中的黄色高亮部分即破

裂与合并气泡分割出来后,统计分割目标区域像素

点的个数,进行稳定度评估,当浮选过程出现某种异

常,导致相关监测变量较正常泡沫稳定性出现偏差,
当这个偏差超过所设定的阈值,则判定浮选泡沫稳

定性异常。
1)计算稳定度

为充分利用浮选泡沫合并及破裂区域大小信

息,定义泡沫稳定度 S 计算公式为:

S = (
X i - xi

X i
) × (x

- - σ
x-

) (10)

　 　 其中, Xi
 表示每一帧浮选泡沫图像的像素数目;

xi 为红外浮选视频帧中分割的不稳定泡沫区域的像

素点数目; σ 为当前阶段泡沫序列分割区域像素点数

目的标准差; i = 1,2,…,n,n 取 100; x- 为当前阶段泡

沫序列分割区域的平均像素点数目,公式为:

x- = 1
n ∑

n

i = 1
xi (11)

　 　 2)计算偏离度

偏离度能够很好地反映出数据的分布情况,可
采用偏离度评估泡沫稳定度的波动,泡沫序列的偏

离度 ri 计算公式为:

ri =
| si - s- |

η
(12)

　 　 其中, si 为该段浮选泡沫序列所对应的稳定度

S;η 为该浮选泡沫稳定度 S 的标准差;
 

i = 1,2,…,
m,m 为该段帧数; s- 为该段浮选泡沫序列稳定度 S
的平均值,公式为:

s- = 1
m∑

m

i = 1
si (13)

　 　 3)异常阈值设置

为评判不同工况下泡沫稳定度的波动异常,设置

偏离度异常阈值进行预警,异常阈值的设置将直接影

响到预警的效果。 采用滑动窗口法不仅能够覆盖到所

有的数据,并且可以通过已经计算出的结果对其他数

据进行覆盖,避免重复计算,减少运行时间。 在滑动过

程中,设 N 为滑动窗口的宽度,计算不同宽度窗口的偏

离度均值 T,以确定不稳定异常阈值,公式为:

T = 1
N∑

N

i = 1
ri (14)
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　 　 将偏离度均值最大值记为 Tmax, 即为异常阈值。

3　 实验结果与讨论

为验证本文所提出的浮选泡沫红外视频时空显

著区域检测方法的有效性,以福建金东矿业股份有

限公司的铅矿浮选厂的泡沫作为实验测试对象,实
验硬件平台为 Intel( R)

 

Core( TM)
 

i7-9700
 

CPU@
3. 00

 

GH、 NVIADIA
 

RTX3060
 

GPU、 16. 00
 

GB
(RAM),软件运行环境为 Windows

 

10
 

Matlab
 

2018,
python3. 7、pytorch1. 1. 0,采用菲力尔 T620 红外热像

仪采集不同时段的浮选泡沫红外视频,由于尚无公

开的红外泡沫视频分割数据集,先在公共数据集

RGB-T234 上测试本文方法分割的有效性,再使用

labelme 标注工具自建浮选泡沫红外视频数据集用

于训练和测试。 通过大量实验对所提方法进行验

证,并与现有方法进行了结果比较分析。
3. 1　 RGB-T234 数据集分割效果

RGB-T234 数据集中包括 234 个红外视频序列

和其对应的 Ground
 

Truth(GT)基准图像。 在该实验

中,选取 4 种具有不同背景的红外视频序列。 图 7
为本文方法对所选取的 4 种红外视频序列进行分割

的结果。 可以看出图 7(c)时间显著区域序列能够

大致提取出目标所在区域,但是边缘很模糊,分割不

够细致,但通过残差修正优化网络后,得到如图 7
( d) 所示的最终分割结果,表现优异,边缘细致

清晰。

(a)原始视频帧

(b)真实标签

(c)时间序列显著区域

(d)本文残差细化网络优化后获得的结果
图 7　 RGB-T234 数据集分割结果

Fig.
 

7　 Segment
 

result
 

of
 

RGB-T234

3. 2　 泡沫红外视频显著目标分割效果

为验证本文时序显著性目标分割算法的有效

性,选择红外浮选泡沫视频帧共 5
 

680 张进行实验,
其中,训练集 90%,测试集 10%,结果如图 8 所示。

图 8( b)为经过 ConvLSTM 模块后所提取出来

的时序显著粗图经过残差细化模块前的显著性检测

结果;图 8(c)为精细化分割图,经过残差细化模块

后的显著性检测结果。 从实验结果可以看出,通过

残差细化模块的优化结果相比于优化前的效果更

好,残差细化模块可以有效地处理边界模糊的情况,
显著区域不仅变得更加平滑,背景抑制更为彻底。

（a）原始红外泡沫视频序列帧

（b）时序显著区域

（c）空间显著目标优化效果

图 8　 时序显著目标分割结果

Fig.
 

8　 Segmentation
 

results
 

of
 

time-series
 

salient
 

targets

　 　 为验证本文时序显著性目标分割方法在不同工

况下、不同大小类型的气泡具有普遍性,利用过浮

选、正常浮选、欠浮选 3 组泡沫红外视频序列对提出

的分 割 方 法 ( Ours ) 与 最 近 提 出 的 FSVOS[11] 、
BASNet[12] 、Yolact[13] 、CrossVIS[14] 等 4 种分割方法

进行定性和定量对比实验,实验结果如图 9 ~ 图 11
所示,其中 Ground

 

Truth
 

( GT) 为人工标注的真实

值。 可以看出本文方法的分割效果最接近 GT,边缘

平滑且分割的较为细致;FSVOS 对于边缘细节的处

理有待提高;BASNet 在欠浮选图像中容易将边缘黄

亮区域识别为合并或破裂区域从而造成过分割;
Yolact 方法在过浮选图像中可以看出分割结果不够

完整,出现欠分割现象;
 

CrossVIS 方法不能较好的

识别泡沫中间的缝隙,将背景错误识别成目标。
　 　 为了客观定量地衡量各种方法的性能,对分割

结果进行评估,选取正常浮选气泡图像、欠浮选气泡

图像、过浮选气泡图像各 50 张作为实验对象进行定

量评估。 选取计算网络分割输出得到 M 和此帧的

真实标注 G 的交并集( IoU)、像素准确率(
 

Pixel-
Accuracy,

 

PA)以及分割错误率 Error 对实验结果进

行评估,公式为:

IoU = M ∩ G
M ∪ G

(15)

PA = TP + TN
TP + TN + FP + FN

(16)
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　 　 　 　 　 　 (a)
 

Over-flotation
 

　
   

(b)
 

Ours　 　 (c)
 

FSVOS　 　 (d)
 

BASNet　 　 (e)
 

Yolact　 　 ( f)
 

CrossVIS
 

　
 

　 (g)
 

GT
图 9　 过浮选红外泡沫分割结果

Fig.
 

9　 Over-flotation
 

infrared
 

froth
 

segmentation
 

results

　 　 　 　 (a)
 

Normal
 

flotation　 　 (b)
 

Ours　 　 (c)
 

FSVOS　 　 　 (d)
 

BASNet　 　 (e)
 

Yolact　 　
 

(f)
 

CrossVIS　 　 　 (g)
 

GT
图 10　 正常浮选泡沫红外图像分割结果

Fig.
 

10　 Normal
 

flotation
 

infrared
 

froth
 

segmentation
 

results

　 　 　 　 　 (a)
 

Under-flotation　 　 (b)
 

Ours　 　 　 (c)
 

FSVOS
 

　
   

(d)
 

BASNet　 　 (e)
 

Yolact　 　 ( f)
 

CrossVIS　 　 (g)
 

GT
图 11　 欠浮选红外泡沫分割结果

Fig.
 

11　 Under-flotation
 

infrared
 

froth
 

segmentation
 

results

Error = FP + FN
TP + FN

(17)

　 　 其中,TP 表示标准割和算法分割结果重合的区

域;FN 表示标准割去除重合部分 TP 的区域;FP 表

示算法分割结果去除重合部分 TP 的区域。
　 　 针对过浮选泡沫图像分割结果见表 1,Yolact 算

53第 11 期 严欣,
 

等:
  

基于时序红外显著目标分割的浮选泡沫稳定度估计



法和 CrossVIS 方法会对于较大崩塌或合并气泡的边

缘部分出现欠分割,导致分割准确率的下降,而本文

的 IoU 平均提升了 4. 76%,PA 平均提升了 1. 29%,
Error 平均降低了 1. 24%,本文方法能精准分割出气

泡间的缝隙,一定程度上提高了分割精度;针对欠浮

选泡沫图像分割结果,BASNet 方法和 FSVOS 方法对

小气泡误检误分割,导致过分割从而分割准确率降

低,而本文的 IoU 平均提升了 0. 38%,PA 平均提升了

1. 23%,Error 平均降低了 1. 05%;针对正常浮选气泡

图像,5 种方法均呈现出较高的分割精度,但本文的

IoU 平均提升了 3. 96%,PA 平均提升了 0. 49%,Error
平均降低了 0. 007

 

5%。 综上所述,本分方法用于分

割不同工况下合成和崩塌的气泡,平均分割交并比为

85. 27%、平均像素准确率为 90. 67%、平均分割错误

率为 8. 2%,不同工况下均表现出较高的分割精度,满
足浮选生产在线检测和动态变化的需求。

表 1　 泡沫红外视频显著目标分割结果比较

Table
 

1　 Comparison
 

of
 

significant
 

target
 

segmentation
 

results
 

in
 

froth
 

infrared
 

video

算法
欠浮选

IoU PA Error

正常浮选

IoU PA Error

过浮选

IoU PA Error

FSVOS 0. 796
 

9 0. 899
 

5 0. 089
 

4 0. 827
 

3 0. 885
 

7 0. 087
 

4 0. 868
 

9 0. 894
 

5 0. 091
 

9

BASNet 0. 697
 

7 0. 903
 

1 0. 096
 

8 0. 798
 

5 0. 901
 

1 0. 089
 

6 0. 846
 

9 0. 890
 

5 0. 084
 

7

Yolact 0. 831
 

4 0. 901
 

4 0. 093
 

8 0. 834
 

9 0. 865
 

9 0. 085
 

3 0. 839
 

8 0. 883
 

0 0. 088
 

2

CrossVIS 0. 825
 

7 0. 907
 

5 0. 094
 

9 0. 846
 

3 0. 905
 

6 0. 089
 

2 0. 849
 

5 0. 885
 

6 0. 084
 

9

本文 0. 835
 

6 0. 915
 

8 0. 081
 

3 0. 866
 

4 0. 894
 

5 0. 087
 

8 0. 855
 

1 0. 909
 

7 0. 076
 

9

3. 3　 分割网络各个模块消融实验

为了进一步验证本文所提分割算法中各个模块

的有效性,本文以浮选泡沫红外视频中的正常浮选

泡沫作为验证数据集,以 CNN+
 

ConvLSTM 为基线,
分别添加注意力 SAM 模块和残差细化模块,进行消

融实验,实验结果见表 2。
表 2　 消融实验

Table
 

2　 Ablation
 

experiment

模型 IoU PA Error

CNN+ConvLSTM 0. 642
 

1 0. 765
 

4 0. 215
 

9

CNN+ConvLSTM+SAM 0. 651
 

7 0. 778
 

2 0. 187
 

6

CNN+ConvLSTM+Residual
 

refinement 0. 764
 

9 0. 839
 

2 0. 135
 

4

本文 0. 846
 

3 0. 905
 

6 0. 089
 

2

　 　 通过比较 CNN+ConvLSTM 与 CNN+ConvLSTM+
SAM 的 3 个评估指标可以再一次验证注意力 SAM

模块的有效性,同时通过比较 CNN + ConvLSTM 与

CNN + ConvLSTM + 残 差 细 化 模 块 ( Residual
 

refinement)进一步验证残差细化模块有助于分割精

度的大幅度提升,可以看出本文方法的 IoU 平均提

升了 16. 06%,PA 平均提升了 11. 12%,Error 平均降

低了 9. 04%。
3. 4　 浮选泡沫稳定度估计及异常评判

随机选取过浮选、正常浮选、欠浮选泡沫各 10
个红外视频样本,每个视频样本的采样间隔为 1

 

s,
对合并及破裂泡沫进行时序显著目标分割,对分割

出来的区域进行像素数目统计,计算相应稳定度 S,
统计的稳定度曲线如图 12 所示,可以看出图 12(c)
过浮选泡沫的稳定度最高,图 12( b)欠浮选泡沫的

稳定度最低,而图 12(a)正常浮选泡沫的稳定度适

中,与实际工况下泡沫的稳定性吻合。
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(a)
 

正常浮选稳定度　 　 　 　 　 　 　 　 　 　 (b)
 

过浮选稳定度　 　 　 　 　 　 　 　 　 　 　 (c)
 

欠浮选稳定度　 　 　 　
图 12　 不同工况泡沫稳定度

Fig.
 

12　 Froth
 

stability
 

of
 

different
 

performance
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　 　 为了进一步验证稳定度计算的准确性,分别选

取浮选厂正常浮选、过浮选和欠浮选状态下的 10 分

钟的运行数据作为实验数据,数据采样间隔为 3
 

s。
将实验数据输入搭建好的分割模型作为测试集,计
算稳定度的预测值。 3 种状态下稳定度实际值与预

测值的对比结果如图 13 所示,并选择 RMSE、MAE
和 R2 作为评价指标,取各参数的平均值作为评价结

果,各评价指标的计算如下式:

RMSE = 1
N∑

N

i = 1
(yij - ŷij)

2
(18)

MAE = 1
N∑

N

i = 1
| yij - ŷij | (19)

R2 = 1 -
∑
N

i = 1
(yij - ŷij) 2

∑
N

i = 1
(yij -y

-
ij) 2

(20)

　 　 其中, yij、ŷij 和 y- ij 分别为第 j 个时刻变量 i 的实

际值、预测值和平均值; j = 1,2,…,N,N为数据集时

间序列的长度。

过浮选稳定度实际值
过浮选稳定度预测值
欠浮选稳定度实际值
欠浮选稳定度预测值
正常浮选稳定度实际值
正常浮选稳定度预测值

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

稳
定

度
S

0 50 100 150 200
样本时刻/s

图 13　 3 种工况下稳定度实际值与预测值对比图

Fig.
 

13　 Comparison
 

of
 

actual
 

and
 

predicted
 

stability
 

under
 

three
 

performance

　 　 实验统计结果见表 3,可以看出预测结果与实

际值较接近,预测准确性较高。

表 3　 3 种工况下泡沫稳定度预测性能统计

Table
 

3　 Prediction
 

performance
 

statistics
 

of
 

froth
 

stability
 

under
 

three
 

performance

Image
 

type RMSE MAE R2

正常浮选 0. 591
 

6 0. 515
 

5 0. 841
 

7

欠浮选 0. 555
 

8 0. 464
 

9 0. 867
 

9

过浮选 0. 557
 

1 0. 479
 

2 0. 859
 

0

平均值 0. 568
 

2 0. 486
 

5 0. 856
 

2

　 　 为验证泡沫稳定度异常的判断效果,在福建金

东矿业股份有限公司的浮选厂中实时采集铅浮选槽

中泡沫表面的红外视频图像进行实验,调节浮选药

剂量处于正常浮选状态,计算泡沫稳定度的偏离度,
得到一段偏离度序列,偏离度曲线如图 14 所示。 选

择滑动窗口的宽度 N 为 10,计算得到 TN = 1. 614
 

5,
红色实线为异常阈值线。 在第 120 分钟处突然调节

药剂量减少 20%,使浮选槽矿浆处于欠浮选状态,
降低泡沫的稳定性;第 127 分钟后偏离度突增超过

异常阈值,第 180 分钟处将药剂量调回原值,第 192
分钟后偏离度逐步下降回原来的正常范围。 由此可

知,偏离度的变化可以灵敏的反映泡沫稳定度的动

态变化,且可对泡沫稳定性及工况异常及时作出有

效判断。

3

2

1

0
0 100 200 300

Time/min

D
ev
ia
tio

n

Deviation
Anomalthreshold

Anomalthreshold1.6145

图 14　 偏离度曲线及异常判断

Fig.
 

14　 Deviation
 

curve
 

and
 

abnormal
 

judgement

4　 结束语

本文提出一种基于时序红外显著目标深度学习

分割的浮选泡沫稳定度估计方法,对泡沫表面进行

红外热成像,将不稳定气泡检测转换为红外显著目
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标分割,根据分割结果计算泡沫稳定度,实现了浮选

泡沫表面稳定性的准确定量描述。 将注意力机制添

加到空洞卷积改进的 VGG-16 网络中以提取初始

红外显著信息,输入至 ConvLSTM 网络中以实现时

序显著性区域的初定位,然后构建 U 型编码器-解

码器结构的残差细化网络实现显著目标的精细化分

割,根据分割结果计算泡沫稳定度,并对泡沫稳定度

的偏离度进行统计实现异常工况检测。 实验结果表

明,本文方法在浮选泡沫红外视频数据集和公共数

据集 RGB-T234 上均能取得较好的显著目标分割效

果,不同工况下的平均分割交并比为 85. 27%、平均

像素准确率为 90. 67%、平均分割错误率为 8. 2%,
分割精度较现有文献方法有一定提升,3 种工况下

泡沫稳定度预测的 RMSE、MAE 和 R2 的平均值分别

为 0. 568
 

2、0. 486
 

5、0. 856
 

2,实现了泡沫稳定性的

准确定量描述,为后续的浮选生产工况识别和故障

早期预警奠定基础。
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