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摘　 要:
 

颈缘线的精确提取对于全冠预备体的牙齿修复具有至关重要的意义。 传统的颈缘线提取方法不仅效率低下,而且缺

乏自动化,存在人为误操作且精度低的问题。 为了解决这一问题,本文提出结合了马尔可夫随机场优化的 RandLA-Net 点云

分割网络与 KDTree 近邻搜索和三次 B 样条曲线拟合的算法,旨在实现牙齿预备体颈缘线的自动化提取。 首先,利用口腔扫

描仪获取单牙的三维数据,并对点云数据进行手工标注,以进行单牙分割;其次,通过马尔可夫随机场优化的 RandLA-Net 分
割网络对单牙点云数据进行预测,以识别出颈缘线点集;最后,为了提升颈缘线点集的预测精度和平滑度,采用 KDTree 近邻

搜索和三次 B 样条曲线拟合作后处理,从而获得精确的颈缘线。 实验结果表明,通过本文算法所得的颈缘线预测结果的平均

交并比(mIoU)达到了 92. 76%,自动提取的颈缘线的误差范围介于 0. 022 ~ 0. 544
 

mm,验证了本文算法在自动化提取颈缘线

方面的高效性和准确性,为提高牙齿修复工作的质量和效率提供了有力的技术支持。
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Abstract:
 

Precise
 

extraction
 

of
 

the
 

cervical
 

margin
 

line
 

is
 

of
 

critical
 

importance
 

in
 

the
 

restoration
 

process
 

of
 

full- crown
 

tooth
 

preparations.
 

Traditional
 

algorithms
 

for
 

cervical
 

margin
 

extraction
 

are
 

not
 

only
 

inefficient
 

but
 

also
 

lack
 

automation,
 

prone
 

to
 

human
 

error,
 

and
 

exhibit
 

low
 

accuracy.
 

To
 

address
 

these
 

issues,
 

this
 

paper
 

proposes
 

an
 

automated
 

cervical
 

margin
 

extraction
 

algorithm
 

that
 

integrates
 

a
 

Markov
 

Random
 

Field
 

(MRF)
 

optimized
 

RandLA-Net
 

point
 

cloud
 

segmentation
 

network
 

with
 

KDTree
 

nearest-neighbor
 

search
 

and
 

cubic
 

B-spline
 

curve
 

fitting. The
 

proposed
 

method
 

first
 

uses
 

the
 

MRF-enhanced
 

RandLA-Net
 

to
 

segment
 

single-tooth
 

point
 

cloud
 

data
 

and
 

identify
 

potential
 

cervical
 

margin
 

point
 

sets.
 

To
 

further
 

improve
 

the
 

accuracy
 

and
 

smoothness
 

of
 

these
 

predicted
 

points,
 

KDTree- based
 

nearest - neighbor
 

search
 

and
 

cubic
 

B - spline
 

curve
 

fitting
 

are
 

applied
 

as
 

post - processing
 

techniques
 

to
 

generate
 

a
 

precise
 

cervical
 

margin
 

line. Experimental
 

results
 

demonstrate
 

that
 

the
 

proposed
 

algorithm
 

achieves
 

an
 

accuracy
 

(Acc)
 

of
 

96. 57%
 

and
 

a
 

mean
 

Intersection
 

over
 

Union
 

(mIoU)
 

of
 

92. 76%.
 

The
 

error
 

range
 

falls
 

between
 

0. 022
 

to
 

0. 544
 

mm.
 

These
 

findings
 

confirm
 

the
 

high
 

efficiency
 

and
 

accuracy
 

of
 

the
 

proposed
 

method
 

in
 

automating
 

cervical
 

margin
 

extraction,
 

offering
 

strong
 

technical
 

support
 

for
 

enhancing
 

the
 

quality
 

and
 

efficiency
 

of
 

dental
 

restoration
 

procedures.
Key

 

words:
  

margin
 

line;
 

point
 

cloud
 

segmentation;
 

Markov
 

random
 

field

�哈尔滨工业大学主办 科技创见与应用

作者简介:
 

叶　 洲(1998—),男,硕士,主要研究方向:三维图像处理。

通信作者:
 

陈　 胜(1976—),男,博士,副教授,硕士生导师,主要研究方向:医学图像处理与分析。 Email:chnshn@ hotmail. com。

收稿日期:
 

2024-02-27

0　 引　 言

口腔健康是全身健康的重要组成部分,口腔疾

病如龋齿、牙周病等会破坏牙齿硬组织和牙齿周围

软组织,除了影响咀嚼、说话等功能和美观外,还会

导致社会交往困难和心理障碍。 在第四次中国口腔

健康流行病学调查报告中显示,牙齿问题已经困扰

了全国 90%以上的居民[1] 。 各年龄段的龋患率居

高不下,相应的口腔修复市场也在日益扩大。
颈缘线作为全冠预备体的重要指标,其提取质



量不仅直接影响修复体的建模精度,而且修复体在

口腔内就位时,其边缘的位置、形态等严重影响患者

佩戴的舒适度和牙周组织健康。 有研究表明,许多

患者在全冠修复后,会出现牙齿红肿、出血甚至义齿

基牙松动、脱落等问题,冠与肩台不密贴是其最有可

能的原因[2] 。 为了保证修复体的成功制作,减少患

者的病症复发,精确提取颈缘线具有至关重要的

作用。
传统颈缘线提取主要通过医师手工选取网络模

型上多个特征点,再在特征点之间绘制连接路径,首
尾相连进行闭合,构成一条牙齿预备体颈缘线路径。
这种方法需要有经验的医生操作,并且会花费大量

时间,效率低下,且高度依赖于稳健的交互式算法。
戴宁等[3]利用方向追踪方法提取初始特征线,精度

较低;Zhang 等[4]利用启发式搜索策略提取特征线,
但交互次数较多,需要提升效率;马银玲[5] 提出一

种基于改进蚁群算法的颈缘线自动提取方法,但对

输入的网格要求较高,会出现锯齿状边界。
随着卷积神经网络在医学图像分析领域的发展

和应用,基于深度学习的方法已成为医学领域的一

种可行方法。 与传统方法相比,网络训练学习目标

特征,不需要人为操作,效率更高。 Xu 等[6] 提出一

种 基 于 卷 积 神 经 网 络 ( Convolutional
 

Neural
 

Networks,CNNs)的牙齿分割方法,有较好的分割精

确度;Tian 等[7]基于 3D 卷积神经网络,解决牙齿误

分类问题。 但是以上方法都存在无法自动且精确地

提取出单牙颈缘线的问题,为自动化提取高精度的

单牙颈缘线,本文提出一种结合马尔可夫随机场优

化的 RandLA-Net 分割网络并结合 KDTree 近邻搜

索和三次 B 样条曲线拟合算法。 首先,使用经马尔

可夫随机场优化的 RandLA-Net 对预备体牙齿点云

数据进行分割, 得到初步预测结果; 其次, 通过

KDTree 算法测量每个牙根点至牙冠点的最近距离,
以提取颈缘线点集;最后,利用三次 B 样条曲线对

最小生成树算法自动排序后的颈缘线点集进行平滑

曲线拟合和采样,成功获取平滑的颈缘线点集,实现

精确牙齿颈缘线自动提取。

1　 本文算法

1. 1　 算法框架

本文算法由两阶段组成,是对口腔扫描仪器扫

得的三维数据进行单牙分割,阶段一是将已经标注

的数据输入网络模型进行训练和预测,以得到一个

最优权值的分割网络模型,实现沿颈缘线自动分割

点云的功能,如图 1 所示;阶段二是对数据的后处

理,先提取分割完的点云边界点,然后对于这些点进

行曲线拟合和插值,再将拟合的点映射回原始的三

维数据,得到最终的颈缘线结果,如图 2 所示。

图 1　 算法阶段一

Fig.
 

1　 Algorithm
 

stage
 

1

图 2　 算法阶段二

Fig.
 

2　 Algorithm
 

stage
 

2

1. 2　 分割网络

本文选择优化后的 RandLA-Net 网络进行牙体

的自动分割,网络架构如图 3 所示。 首先,利用一个

全连接层(FC)将输入的多光谱点云数据维度统一

扩充至 8 维;搭建 5 层下采样率分别为 1 / 4,1 / 16,
1 / 64,1 / 256,1 / 512 的随机采样层(RS)以及相应的

5 个局部特征聚合模块( LFA)。 5 组下采样层与

LFA 可聚合场景中点云局部特征,逐步扩大感受野

并逐渐提高点云的特征维度 ( 8
 

→
 

16
 

→
 

64
 

→
 

128
 

→
 

256
 

→
 

512);通过线性插值的方法逐步上采

样,通过跳跃连接( Skip
 

link)与编码器的特征图叠

加,输入多层感知机(Multilayer
 

Perceptron
 

,MLP)进
行降维;随后连接 3 个全连接层和一个 dropout 层来

输出预测点云类别;最后,利用马尔可夫随机场

(Markov
 

Random
 

Field,MRF)优化点云分割并输出

预测结果。
　 　 局部特征聚合模块由局部空间编码单元、注意

池和扩张残差块 3 个神经单元组成。 局部空间编码

单元用来编码局部几何模式,聚合得到新的邻近点

特征集合。 给定一个具有每点特征的点云 P,对于

第 i 个点,基于点的欧氏距离,通过最近邻算法搜

索其邻近的 k 个点;对于中心点 pi 的每个最近的 k
个点的相对点位置进行编码,得到一组新的近邻点

特征集合 F̂ i = { f̂
  

1
k , …,f̂

   

k
k ,…, f̂

   

K
k }, 具体编码规

则为:
  

　
 

rki = MLP(pi 􀱇pki 􀱇 (pi -pki ) 􀱇 ‖pi -pki ‖) (1)
其中, pi 和 pk

i 为点的 XYZ 坐标; ⊕ 为连接

操作; ‖·‖ 为计算相邻点与中心点之间的欧氏

距离。
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输入点云

(N,8)

(N/4,16)(N/16,64)

(N,2)(N,2)(N,32)(N,8)
(N/4,16)(N/16,64)

(N/64,128)
(N/256,256)

(N/512,512)(N/512,512)
(N/256,256)

(N/64,128)

输出结果

LFA+RS US+MLP FC Skiplink MRF

图 3　 优化的 RandLA-Net 网络架构图

Fig.
 

3　 Optimized
 

RandLA-Net
 

network
 

architecture
 

diagram

　 　 得到 F̂ i 后,通过注意力集中单元将其聚合。 单

元由一个共享 MLP 和 Softmax 组成的共享函数 g()
来学习每个特征的唯一注意力分数,将学习到的权

重与特征加权求和,生成一个信息特征向量 f
~

i 作为

赋予中心点的聚合特征:

f
~

i = ∑
K

k = 1
( f̂

  

k
i ·g( f̂

  

k
i ,

 

W)) (2)

　 　 其中, W 是一个共享的 MLP 的可学习权值。
为了增加每个点的接受域,局部特征聚合模块

将具有跳跃连接的多个局部空间编码单元和注意池

单元堆叠为扩张残差块。
马尔可夫随机场是一种基本的图论模型,用于

表示由多个变量组成的模型,在这个模型中,每个节

点的状态不仅由其自身的属性决定,更重要的是受

到其邻居节点状态的影响,这一特点使得马尔可夫

随机场特别适用于处理具有高度局部相关性的数

据,可以进一步提升分割边界的精度与平滑度[8] 。
这种特点通过变量之间的局部依赖关系来体现,变
量和变量的依赖关系通过一个无向图来表示,图中

的节点对应于变量,边表示变量之间的依赖关系。
团是无向图顶点的子集,在这个子集中每两个顶点

都是邻接的。 若团中加入另外任意一个节点,都不

能形成团,则该团为极大团。 无向图的联合概率需

要引入团和势函数来协助计算,不同的团结点的关

系构成方式不同,可用不同的势函数来描述其分布,
势函数用于定义概率分布的非负实函数。 普遍使用

的马尔可夫随机场公式如下:

P(X = x) = ∏
C∈cl(G)

ØC(XC) (3)

　 　 其中, X 是联合概率密度; cl(G) 是 G 团的集

合;函数ØC 是势函数。
通过不断地迭代传递,更新因子和边势函数,并

计算每个节点的后验概率分布,最终将每个节点的

概率信息结合起来,得到网络的最大后验状态推理

结果。
1. 3　 颈缘线提取

本文在马尔可夫随机场优化的 RandLA-Net 的
牙齿三维点云预测结果上进行颈缘线提取,结合

KDTree 近邻搜索和三次 B 样条曲线拟合,以提高颈

缘线点集的预测精度和平滑度。
在用分割网络识别出牙根和牙冠的具体位置信

息后,通过近邻搜索方法查找每个牙根点在指定距

离阈值内最近的牙冠点。 为了加速这一查找过程,
采用了 KDTree 算法,获得初步的颈缘线点集。 为了

确保颈缘线点集能够正确地拟合,需要对点集进行

排序,本文采用最小生成树算法来对初步颈缘线点

集进行排序,通过计算点集内各点间的距离矩阵构

建图结构,使用深度优先搜索算法遍历图以获得点

的顺时针顺序;使用三次 B 样条曲线对颈缘线点集

进行拟合,得到一条较为光滑的颈缘线;最后投影回

原始牙齿预备体,以实现牙齿预备体颈缘线的自动

提取任务。

2　 实验分析

2. 1　 实验数据

实验数据来自真实口腔医院的患者,所有数据

均已经经过去隐私化处理。 使用口腔扫描仪扫描牙

齿,再进行单牙分割,得到三维牙齿预备体数字化模
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型,如图 4 所示。

图 4　 单牙分割

Fig.
 

4　 Single
 

tooth
 

segmentation

　 　 运用开源的 CloudCompare 软件对数字化模型

进行点云化,得到预备体点云,在专业医师的指导

下,手动标注,对预备体点云进行标签化处理,沿着

牙齿颈缘线路径对预备体点云进行裁剪。 在所有点

中,位于颈缘线上部分的点记作标签 1,即解刨牙

冠;位于颈缘线下部分的点记作标签 0,即解剖牙

根,标注前后的数字化模型如图 5 所示。

　 　 (a)
 

未标注　 　 　 　 　 　 　 (b)
 

已标注

图 5　 点云标注

Fig.
 

5　 Point
 

cloud
 

labeling

　 　 处理后点云数据共有 160 个,根据 4 ∶ 1 的比例

随机将牙齿预备体数据集划分为训练集和测试集。
2. 2　 实验设置

本文实验硬件设备搭配了
 

NVIDIA
 

GeForce
 

RTX
 

3090
 

的图像处理器和
 

AMD
 

Ryzen9
 

5900X
 

的
 

12
 

核处理器。 基于 Pytorch 框架进行模型的搭建,
其中 Pytorch 版本为 1. 7. 0。

采用 Acc,平均交并比 mIoU 作为模型的评价指

标,公式如下:

　 　 　 　 　 Acc = TP + TN
TP + TN + FP + FN

(4)

　 mIoU = 1
2

( TP
TP + FP + FN

+ TN
TN + FP + FN

)

(5)
　 　 其中,TP 表示预备体点云中点的标签被正确地

预测为标签 0 的个数;TN 是点的标签被正确地预测

为标签 1 的个数;
 

FP 代表点的标签被错误地预测
 

为标签 0 的个数;
 

FN 表示点的标签被错误地预测
 

为标签 1 的个数。
2. 3　 分割结果分析

将本文提出的算法与当前领先的几种点云分割

网 络 算 法, 包 括 PointNet + +[9] 、 PointSIFT[10] 、
PointConv[11]以及 KPConv[12]进行对比实验,预测结

果见表 1。 根据表 1 的数据可以看出本文分割网络

在 Acc 和平均 mIoU 两个关键指标上均取得了最优

的性能,分别达到了 96. 57%和 92. 76%,比 KPConv
网络的准确率提高了 1. 6 个百分点,在 mIoU 上提

高了近 3 个百分点,在分割精度上超越了所有对比

算法。 这一显著的性能提升,归因于本文算法中马

尔可夫随机场优化的 RandLA - Net 分割网络的应

用,该分割网络能够更有效地处理稀疏和不规则的

点云数据。
表 1　 本文分割网络与对比分割网络预测结果

Table
 

1　 Prediction
 

results
 

of
 

the
 

proposed
 

segmentation
 

network
 

vs.
 

comparative
 

segmentation
 

networks

网络模型 Acc / % mIoU / %

PointNet++ 92. 31 85. 82

PointSIFT 91. 11 83. 07

PointConv 92. 29 86. 13

KPConv 94. 97 89. 77

本文分割网络 96. 57 92. 76

　 　 对数据集的可视化分割结果如图 6 所示,可见

本文设计的分割网络能够较为准确地识别出颈缘

线,且成功保持了颈缘线的整体方向性。

　 　 (a)
 

真值　
 

(b)
 

分割结果　 　 　
图 6　 分割点云结果

Fig.
 

6　 Segmentation
 

point
 

cloud
 

results

　 　 本文采用了马尔可夫随机场优化方法对

RandLA-Net 分割网络在牙齿点云数据上的分割结

果进行优化,结果见表 2。 通过对比 RandLA-Net 分
割网络在 MFR 优化前后分割网络的平均交并比从

91. 58%增加到 92. 76%,整体准确率也从 95. 93%提

升至 96. 57%,表明 MRF 优化为 RandLA-Net 分割

网络尤其是在处理复杂几何结构的牙齿数据时,提
供了更为精细的分割能力,优化后的模型不仅能够

更准确地识别和分割牙根与牙冠,还显著提高了模

型对细节的捕捉能力。
表 2　 马尔可夫随机场优化结果对比

Table
 

2 　 Comparison
 

of
 

optimization
 

results
 

for
 

Markov
 

random
 

fields

分割结果
IoU

牙根 牙冠
mIoU / % Acc / %

原始分割结果 89. 31 93. 85 91. 58 95. 93

优化分割结果 90. 67 94. 86 92. 76 96. 57
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2. 4　 颈缘线提取

根据分割结果利用 KD 树搜索算法来寻找每个

牙根点与最近牙冠点之间的距离,有效地贴合分割

结果的边缘,有较为准确的初步颈缘线提取效果,但
可观察到提取出的颈缘线点集存在一定程度的锯齿

状,需要进一步的处理以优化颈缘线的平滑度。 为

了解决上述锯齿状问题,本文采用了三次 B 样条曲

线拟合方法[13] 对最小生成树方法排序后的颈缘线

点集进行曲线拟合,得到了一条更加平滑且贴合实

际颈缘线的曲线,显著提高了被提取颈缘线的质量

和准确性,曲线的拟合过程如图 7 所示。

23
22
21
20
19
18

-12-11-10-9-8-7-6 28
29
30

31

(a)分割结果 (b)点集获取 (c)曲线拟合
图 7　 曲线拟合过程

Fig.
 

7　 Curve
 

fitting
 

procedure

2. 5　 结果分析

完成颈缘线点集的平滑优化后,将其投影回原

始牙齿预备体的曲面上。 为判断本文算法提取的颈

缘线与真实颈缘线之间的误差,通过将提取的颈缘

线(以黑色标示)与实际的颈缘线即牙科医生手工

标注的颈缘线(以红色标示)进行对比,可以清楚地

看到两者之间的高度贴合性,如图 8
 

所示。 提取的

颈缘线与真实颈缘线最小偏差仅为 0. 022
 

mm,最大

偏差为 0. 544
 

mm,证明了本文算法的高精确度及在

牙齿预备体颈缘线自动化提取任务上的出色性能。

图 8　 真实与提取的颈缘线间的比较

Fig.
 

8　 Comparison
 

between
 

real
 

and
 

extracted
 

teeth
 

margin
 

line

3　 结束语

本文提出了融合马尔可夫随机 场 优 化 的

RandLA-Net 分割网络与结合 KDTree 近邻搜索和三

次 B 样条曲线拟合的方法,以自动化提取牙齿预备

体的颈缘线。 通过与真实颈缘线的对比,本研究方

法所得结果的偏差范围在 0. 022 ~ 0. 544
 

mm,这一

成果不仅展示了方法的高精确度,也证明了其在实

际应用中的可行性,可以有效地减少牙科治疗和预

备体制造过程中的手动操作需求。 未来的研究将集

中在优化现有算法、探索新的数据处理技术和算法,
以达到更高的精度要求。
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