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Algorithm for extracting cervical margin lines in oral restoration
based on segmentation network

YE Zhou, CHEN Sheng

(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China)

Abstract: Precise extraction of the cervical margin line is of critical importance in the restoration process of full —crown tooth
preparations. Traditional algorithms for cervical margin extraction are not only inefficient but also lack automation, prone to human
error, and exhibit low accuracy. To address these issues, this paper proposes an automated cervical margin extraction algorithm that
integrates a Markov Random Field ( MRF) optimized RandLLA—Net point cloud segmentation network with KDTree nearest—neighbor
search and cubic B-spline curve fitting. The proposed method first uses the MRF—-enhanced RandLA—-Net to segment single—tooth
point cloud data and identify potential cervical margin point sets. To further improve the accuracy and smoothness of these predicted
points, KDTree—based nearest —neighbor search and cubic B -spline curve fitting are applied as post— processing techniques to
generate a precise cervical margin line. Experimental results demonstrate that the proposed algorithm achieves an accuracy ( Acc) of
96.57% and a mean Intersection over Union ( mloU) of 92. 76%. The error range falls between 0. 022 to 0. 544 mm. These
findings confirm the high efficiency and accuracy of the proposed method in automating cervical margin extraction, offering strong
technical support for enhancing the quality and efficiency of dental restoration procedures.
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Fig. 4 Single tooth segmentation
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Table 1 Prediction results of the proposed segmentation network

vs. comparative segmentation networks
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Fig. 6 Segmentation point cloud results
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Table 2 Comparison of optimization results for Markov random

fields
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Fig. 7 Curve fitting procedure
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Fig. 8 Comparison between real and extracted teeth margin line
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