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摘　 要:
 

作为物联网数据获取的边缘终端,传感器状态对于数据采集的准确性和时效性至关重要,然而传感器数量大且各自

运行系统封闭,传输机制多样,长期处于恶劣环境,受干扰因素影响传感器输出常常失真,从而影响系统测量的可靠性。 此

外,传统的物联网传感器状态通常需要人工检查,特别是在传感器发生漂移故障的情况下,由于漂移幅度一开始非常微小且

稳定,相较于其他故障更具隐蔽性。 本文提出了一种数据驱动的故障诊断协同模型,从周期分析故障诊断、图像视觉故障诊

断以及数据分析故障诊断 3 个方面对公共交通环境的传感设备状态进行分析。 实验证明,本文的协同模型诊断能力优于传统

模型,能够缩短传感设备状态诊断时间,为传感器相关工作提供有力支持。
关键词:

 

传感器状态;
 

故障诊断;
 

边缘;
 

协同模型

中图分类号:
 

TP277;TP315 文献标志码:
 

A 文章编号:
 

2095-2163(2025)11-0039-06

Collaborative
 

model
 

of
 

fault
 

diagnosis
 

based
 

on
 

data
 

driven
HU

 

Longjiao,
 

CHEN
 

Qingkui

(School
 

of
 

Optical-electrical
 

and
 

Computer
 

Engineering,
 

University
 

of
 

Shanghai
 

for
 

Science
 

and
 

Technology,
 

Shanghai
 

200093,
 

China)

Abstract:
 

As
 

the
 

edge
 

terminal
 

of
 

Internet
 

of
 

Things
 

data
 

acquisition,
 

the
 

status
 

of
 

sensors
 

is
 

crucial
 

to
 

the
 

accuracy
 

and
 

timeliness
 

of
 

data
 

acquisition.
 

However,
 

the
 

number
 

of
 

sensors
 

is
 

large,
 

their
 

operating
 

systems
 

are
 

closed,
 

transmission
 

mechanisms
 

are
 

diverse,
 

and
 

they
 

are
 

in
 

a
 

harsh
 

environment
 

for
 

a
 

long
 

time.
 

The
 

sensor
 

output
 

is
 

often
 

distorted
 

by
 

interference
 

factors,
 

thus
 

affecting
 

the
 

reliability
 

of
 

system
 

measurement.
 

In
 

addition,
 

the
 

status
 

of
 

traditional
 

Internet
 

of
 

Things
 

sensors
 

often
 

requires
 

manual
 

inspection,
 

especially
 

in
 

the
 

case
 

of
 

sensor
 

drift
 

failures,
 

because
 

the
 

drift
 

amplitude
 

is
 

very
 

small
 

and
 

stable
 

at
 

the
 

beginning,
 

compared
 

to
 

other
 

faults
 

more
 

hidden.
 

Against
 

this
 

background,
 

this
 

paper
 

proposes
 

a
 

data-driven
 

collaborative
 

model
 

for
 

fault
 

diagnosis
 

to
 

analyze
 

the
 

status
 

of
 

sensing
 

devices
 

in
 

the
 

public
 

transportation
 

environment
 

from
 

three
 

aspects:
 

periodic
 

analysis
 

fault
 

diagnosis,
 

image
 

visual
 

fault
 

diagnosis,
 

and
 

data
 

analysis
 

fault
 

diagnosis,
 

to
 

achieve
 

comprehensive
 

monitoring
 

of
 

the
 

status
 

of
 

sensing
 

devices.
 

Experiments
 

have
 

proved
 

that
 

the
 

collaborative
 

model
 

in
 

this
 

paper
 

has
 

a
 

superior
 

diagnostic
 

ability
 

than
 

the
 

traditional
 

model,
 

can
 

shorten
 

the
 

diagnosis
 

time,
 

and
 

provide
 

strong
 

support
 

for
 

sensor-related
 

work.
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0　 引　 言

城市交通的日益发展,利用公共交通工具也可

以享受舒适的出行环境,所以实时关注公共交通情

况显得尤为重要。 以上海轨道交通为例,其运营时

间已有数年,随着使用时间的增加,监控传感器系统

故障的次数也随之递增,由于公共交通监控传感器

分布广泛且结构复杂,设备故障的监测难度大大增

加[1-2] 。 传统解决方案采用定期离线人工检查的方

式,耗时费力,目前已将研究重点转向故障的在线诊

断方面。 2018 年,Sultani
 

等[3]以弱监督学习的方式

对监控里的异常情况进行训练,实现对监控传感器

中异常画面的诊断;Bakhtiaridoust 等[4] 利用深度神

经网络结构形成非线性系统的库普曼预测器,将得

到的线性模型用于故障检测;Gao 等[5] 提出了一种

基于改进深度卷积生成对抗网络( DCGAN)的新型

图像诊断方法,用于机械传感器故障分类;王炜

俊[6]用 Relim 算法对监控设备状态监测数据进行挖



掘,生成监控设备的故障关联规则,对监控设备故障

进行分析;Gao 等[7]设计了一种自适应心跳机制,使
得双方的主机可以通过交换心跳数据包来检测服务

通信状态;Yan 等[8] 设计了一种通信负荷优化的故

障检测算法,用来检测建筑 SHM( Structural
 

Health
 

Monitoring)系统的传感器故障;何天放等[9] 基于边

云协同的温度仪表漂移故障诊断方法,利用系统内

与待诊断仪表相关的仪表测量值进行漂移故障诊

断;Long 等[10]提出了一种基于深度双向长短期记忆

递归神经网络的模型,该模型能够自动提取制冷系

统运行数据,利用累积残差矢量法来提高传感器漂

移故障的可检测性。 虽然传感器故障诊断方法在各

个领域得到了广泛应用,但目前仍存在一些问题。
首先,故障分类时,测试方法依据单一,难以适应环

境的变化;其次,传感器故障类别较多,单一方法判

断故障,无法保证准确性。 为解决上述问题,本文利

用传感器的特性,提出了一种传感器故障诊断协同

模型,通过此模型中的多个诊断模块实现对传感器

资源状态监测和异常诊断,能更迅速地发现问题。
此模型主要由 3 个部分构成:
(1)数据输入:边缘部件采集监控数据,对数据

进行格式转换,再由中间部件拉取监控数据并推送

数据,实现对传感器各指标的实时监控,如内存利用

率、通信数据、监控视频图像数据等;
(2)故障诊断:利用自定义传输协议将监控信

息传输到模型诊断中心,进行传感器的状态分析;
(3)故障决策:当指标结果达到指标预设阈值,

通过决策模块计算评估传感器状态。

1　 模型概述

1. 1　 模型结构

物联网传感器状态监测系统建设基于一系列的

标准规范体系以及安全防护体系。 在安全防护框架

下,本文所提出的协同模型可与传感器进行数据传

输,协同模型结构如图
 

1
 

所示。
　 　 1)传感器设备

系统的设备主要由监控传感器、压力传感器、电
流传感器等多种感知设备组成,为数据采集服务提

供了可靠的硬件支持。
2)缓冲传输区

为控制数据流,将收集的不同类型数据通过发

送接口(send)暂存至缓冲区,经传输中间件处理后

传到汇集接口( collect),接口根据任务周期再进行

数据任务分配,其中数据传输中间件包括数据格式

转换器(DFT)和数据传输器(DT),该缓冲区的数据

将用于后续设备的诊断服务。

转发表实时更新

传感器
设备

Send

Collect

配置表

传输中
间件

数据驱动

周期分析
故障诊断

图像视觉
故障诊断

数据分析
故障诊断

故障决策

更新

数
据
缓
冲
区

调
整
设
备

图 1　 协同模型结构

Fig.
 

1　 Distribution
 

structure
 

of
 

sensor
 

and
 

model
 

components

　 　 3)配置表与转发表

在协同模型结构中,配置表用于存放系统的配

置信息,包括服务器类别、服务器 IP、缓冲区数量

等。 服务器端口分为数据接收端口和数据转发端

口,接收端口根据配置表的信息获取接收端口号,并
循环扫描端口接收数据;转发端口通过查询配置表

中的转发端口号,将数据发送至对应的诊断模块;诊
断模块基于接收到的数据完成状态诊断,并将结果

反馈至故障决策模块。
4)故障决策模块

决策模块将根据状态诊断结果对传感器的工作

状态进行评估,将评估结果反馈给设备的管理中心,
进行动态调整和修复。
1. 2　 模型工作过程

为提升监测体系整体处理能力,协同监测模型

依托数据采集层获取的多源数据(通信 / 图像 / 资源

信息),经特征提取与处理生成远程监视结果。 模

型基于该结果,判断传感器设备的运行状态,完整的

协同模型监测流程如图
 

2
 

所示。
　 　 1)初始化:启动设备后基于中间件获取到边缘

设备的硬软件资源,将数据流以相应的元组形式输

入缓冲区,缓冲区存储数据后,服务器再按照转发表

的要求进行传输。
　 　 2)处理:数据传输至数据驱动模块后,数据驱

动模块根据数据类型将数据依次传输给相应故障诊

断模块进行信息处理,诊断模块再将收集的监视结
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果反馈给故障决策模块,决策模块针对故障类型建

立故障临时存储队列。

启动监测任务

开始 结束

读取数据

初
始

化
处

理

远程监视结果 监测模块

设备状态

异常

可调整故障调整
设备

查询/
反馈

通信
信息
处理

图像
信息
处理

资源
信息
处理

数据分类

是否为待诊断数据

Y

N

决
策

N

Y

图 2　 协同模型监测流程

Fig.
 

2　 Collaborative
 

model
 

monitoring
 

process

　 　 3)决策:本模型中设置的故障队列有通信故障

队列、图片采集异常队列和硬件资源漂移队列。 根

据结果队列再进行以下两步处理:
　 　 (1)

 

故障优先级

通信故障会直接导致整个系统数据交互链路中

断,硬件故障会直接影响整个系统的传输效率下降,
因此在模型决策阶段需要给不同故障赋予不同的优

先级,如:p0 为最严重故障-通信故障,p1 为较严重

-硬件漂移故障,p2 为严重故障-图片采集故障,确
保模型能够自动识别并优先处理影响范围大的故

障。
(2)

 

设备状态队列评估
 

在决策阶段,会为每个节点保存一个固定长度

的历史状态队列和故障计数器,历史队列中保存着

每个节点最近的状态信息,以在一个较长的时间维

度上做出更精准的判断[11-12] 。 中间件通过模型获

取状态后,生成状态标志status。
 

0:通信故障,1:硬

件设备故障,2:数据采集故障,
 

放入相应节点的状

态队列中,故障程度越高则对故障期望的影响越大。
将故障标志累加后取平均作为故障期望 E,即

E = ∑
T

i = 1
status / T (1)

　 　 其中, T 为评估周期。

2　 模型诊断功能

2. 1　 周期分析故障诊断

在现代工程和科学领域中,传感器可能会出现

各种故障,可能导致数据失真、系统异常。 本文基于

协同模型中的周期分析故障诊断来监测传感器的通

信情况,鉴于传感器数量大,为方便协同模型的通信

管理,该诊断模块使用如图 3 所示的分级通信结构

实现对传感器通信数据的传输管理。 各级通信模块

负责汇集下级通信中所有的传感器通信情况,以便

后续故障分析。 除此之外,考虑到需要面对不同类

型的传感通信数据,通用的字符流会增加待传输数

据的开销。 为此,本文故障诊断模块基于如图 4 所

示的通信数据包格式记录通信信息,通过格式中的

数据类型以及设备号可快速区分不同传感器的通信

信息。

待监测组

二级通信模块
二级通信模块

二级通信模块

二级通信模块

二级通信模块
二级通信模块

二级通信模块
一级通信模块

二级通信模块 二级通信模块二级通信模块

待监测组

待监测组

待监测组

图 3　 分级通信技术

Fig.
 

3　 Hierarchical
 

communication
 

technology

消息 id 发送设备号 接收方(主) 接收方(分) 时间戳 心跳数 数据类型

图 4　 数据包格式

Fig.
 

4　 Packet
 

format

　 　 当传感设备正常运行时,每个发送端的传感器

节点需按图 5 所示方式与接收端的主系统建立通信

数据链路,通过发送通信数据包汇报工作状态。 发

送方设置重传定时器,若未在有效期内收到确认报

文则触发重传机制。 当接收端存储的超时异常记录

达到临界值时,周期故障诊断模块需基于分级通信

数据链路的汇总的交互信息分析是否存在通信故

障,并将诊断结果传回模型中的决策模块,同时按图

6 的通信异常存储格式记录异常信息以便定位传感

器通信故障。
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解析异常

解析异常

设置定时器设置定时器

响应超时

发送端 接收端

发送心跳数据
响应结果

发送心跳数据

数据重发

响应结果

发送心跳数据

响应结果

发送心跳数据

响应结果

异常记录

图 5　 通信交互图

Fig.
 

5　 Communication
 

interaction
 

diagram

数据 id 设备 ID 警告名称 时间戳 报警描述 报警状态

图 6　 通信异常存储格式

Fig.
 

6　 Communication
 

exception
 

storage
 

format

　 　 应用层通过中间件及时获取存储数据中报警状

态(0:新异常,1:修正后异常)以及异常类型来感知

传感器的工作通信状态。 在进行周期性监测时,要
考虑到传感器的工作寿命和消耗,避免过于频繁地

询问导致传感器寿命缩短。
2. 2　 图像视觉故障诊断

基于模型的周期分析能够保障传感器在通信层

面的正常运行。 然而,大多数监控传感器处于露天环

境,不可避免会受到周围环境因素的影响,容易出现

拍摄角度变化的情况,而传感器传输图片的质量优劣

会直接或间接地对后续相关分析工作产生影响[13] 。
因此,本文将基于协同模型的图像视觉故障诊断方

法,针对监控传感器的角度偏移故障进行分析。 为了

方便统计,数据在传输以(设备编号,图片存储地址,
时间戳,图片状态,数据类型)元组的形式进行传输,
公交车站台传感器监测的实时图像如图 7 所示。

图 7　 传感器实时图像

Fig.
 

7　 Real-time
 

image
 

of
 

the
 

sensor

　 　 将图像数据传入模型,模型再将数据发送到相

应诊断模块,在诊断模块中采用图 8 所示的 SIFT
(Scale-Invariant

 

Feature
 

Transform)算法来提取图像

的边缘特征点,提取过程如图 8 所示。 通过对比实

时图像与参考图像的特征点匹配情况,能够准确判

断监控点是否发生了偏移。

原图像

目标图像

特征点
检测

特征点
描述

SIFT

特征点
检测

特征点
描述

SIFT

特征点集

特征点集

特征点
匹配

图 8　 SIFT 特征提取过程

Fig.
 

8　 SIFT
 

feature
 

extraction
 

process

　 　 最终的偏移诊断结果如图 9 所示,可以看出当

前的站台的视频角度处于正常范围内。 借助模型中

的图像视觉故障诊断,可以有效解决摄像机位置偏

移带来的问题。

图 9　 偏移诊断结果

Fig.
 

9　 Offset
 

diagnosis
 

result

2. 3　 数据分析故障诊断

公交站台视频传感器分布复杂且需 24 小时连

续运行,这种特性容易引发传感器漂移( Drift)。 而

传感器的漂移状态难以从外部直接判断。 为及时诊

断并处理该问题,本文在基于数据驱动的故障诊断协

同模型中设置了数据分析故障诊断模块,通过对系统

传回的元组数据(数据
 

ID,设备
 

ID,待监测指标值,时
间戳,设备服务类型)进行分析,实现对传感器漂移状

态的有效诊断,具体处理过程如图 10 所示。

RNN

LSTM

SVR

预测值f1

预测值f2

预测值f3

归
一
化
处
理

阈
值
判
断

传
感
器
测
量
值

图 10　 数据分析故障诊断模块处理过程

Fig.
 

10 　 Processing
 

procedure
 

of
 

the
 

data
 

analysis
 

fault
 

diagnosis
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　 　 假设传感器运行至稳定状态时间是 tb, 模型正

常运行观测时刻为 tc,T 为采样周期,tc 时刻可获取

数据的组数 n:

n =
tc -tb

T
(2)
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　 　 若传感器发生故障,动态调节时间周期为 ta,
每个 ta 时间段内可获取数据的组数 n 的计算方式更

新为:

n =
ta

T
(3)

　 　 根据组数 n,从监测数据中获取数据 x = {x1,
x2,x3,…,xi,xi +1,xi +2,…,xn},将 x 输入至模型的数

据分析故障诊断模块,完成对传感器漂移问题的分

析,输出值x- 计算如下式:

x- = ∑
k

i = 1
w i fi(x)

 

(4)

　 　 其中, k 为集成诊断模块中子模块的个数; w i

为每个子模块在故障预估时的权限;
 

fi(x) 为诊断

模块内部各个子模块的预测值。
考虑不同类型的传感器待监测指标的数据范围

不同,需构造反映传感器状态的综合指数,根据综合

指数分析传感器的漂移故障问题[14] 。 综合指数计

算方式如下式:

R = A -x-

A - μ
(5)

　 　 其中, A 为传感器的各待监测指标的报警限值,
μ 为传感器的日常监测均值。

借助综合指数 R 即可分析出传感器的漂移故

障问题,传感器漂移故障异常记录存储格式如图 11
所示。

数据 ID 设备 ID 待监测指标状态 时间戳 设备服务类型

图 11　 漂移故障异常记录存储格式

Fig.
 

11　 Storage
 

format
 

for
 

drift
 

fault
 

anomaly
 

records

　 　 在传感器运行中,应当对各自待监测指标给予

足够的关注。 因为待监测指标持续的高负载可能会

引发系统性能的降低、响应时间的延长,甚至导致系

统崩溃。 本文以内存使用率指标为例,模型分析结

果如图 12 所示。
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图 12　 指标分析结果图
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3　 模型评价

3. 1　 评价指标

为了证明协同模型的可用性,本文利用处理能

力和准确对模型进行评估。
1)为验证协同模型在实际应用中的可用性,硬

件处理能力(Ability)是关键评估维度。 通过选取数

据吞吐量、处理速度、任务处理规模等在内的 n 个核

心硬件指标,组成指标集合 R = {R1,R2,R3,…,Rn}
进行加权运算, 处理能力计算如下式:

Ability = ∑
n

i = 1
R iki (6)

　 　 其中, R i 为硬件处理能力指标的实际测量值,
ki 为指标在总处理能力中的重要程度占比。

2)模型诊断准确率 ( Accuracy) 计算公式如

下式:

Accuracy = TP + TN
TP + FP + TN + FN

(7)

　 　 其中,TP、TN、FP、FN 分别代表被模型预测为正

类的正样本数、预测为负类的负样本数、预测为正类

的负样本数、预测为负类的正样本数。
3. 2　 评价结果

 

为了检测模型的有效性, 本文对协同模型

(Cooperative
 

model)和非协同模型( Non-cooperative
 

model)在处理能力上做对比分析实验,实验结果如

图 13 所示。 可见与非协同模型相比,本文提出的协

同模型在处理传感器数据时具有更高的效率,传感

器间的信息共享和协同工作更加充分,能够更全面

分析数据,尤其处理样本数量比较多时更能体现其

模型的优势。
　 　 尽管在故障诊断领域已有多种优化策略以提升

诊断成功率,但由于系统复杂性与数据不确定性,误
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等:
  

基于数据驱动的故障诊断协同模型



诊现象仍难以完全消除。 本文的模型通过协同多源

信息,构建融合式诊断框架,充分整合不同数据源与

算法的优势,有效缩小故障诊断范围,规避单一方法

的局限性。 经实践验证,该策略显著提升了诊断成

功率。 模型在训练后的准确率对比如图 14 所示,体
现了协同诊断策略的有效性与可靠性。
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图 13　 处理能力结果对比
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4　 结束语

本文提出了一种基于数据驱动的故障诊断协同

模型,用于边缘智能传感器故障诊断。 实验结果表

明,引入边云协同方式应用于故障诊断中,在边缘完

成对数据的预处理,提高了后续诊断效率;模型通过

协同多源信息,构建融合式诊断框架,充分整合不同

算法的优势,有效缩小故障诊断范围,规避单一方法

的局限性。 但该协同模型还存在一些的不足,在应

对大规模边缘监控传感器的诊断场景时,其数据处

理效率与跨节点协同能力呈现一些短板。

参考文献

[1]
      

汤俊儿.
  

视频监控系统常见异常检测技术研究及应用[D] .
  

广

州:华南理工大学,
 

2020.
 

[2]
 

HU
 

Z
 

X,
  

WANG
 

Y,
  

GE
 

M
 

F,
  

et
 

al.
  

Data-driven
 

fault
 

diagnosis
 

method
 

based
 

on
 

compressed
 

sensing
 

and
 

improved
 

multiscale
 

network[ J] .
  

IEEE
 

Transactions
 

on
 

Industrial
 

Electronics,
  

2019,
  

67(4):
 

3216-3225.
 

[3]
 

SULTANI
 

W,
  

CHEN
 

C,
  

SHAH
 

M.
  

Real-world
 

anomaly
 

detection
 

in
 

surveillance
 

videos[C] / / Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
  

Piscataway,
 

NJ:IEEE,
 

2018:
 

6479-6488.
 

[4]
 

BAKHTIARIDOUST
 

M,
  

IRANI
 

F
 

N,
  

YADEGAR
 

M,
  

et
 

al.
  

Data-
driven

 

sensor
 

fault
 

detection
 

and
 

isolation
 

of
 

nonlinear
 

systems:
 

Deep
 

neural-network
 

Koopman
 

operator[ J] .
  

IET
 

Control
 

Theory
 

&
 

Applications,
  

2023,
  

17(2):
 

123-132.
 

[5]
 

GAO
 

Y,
  

PILTAN
 

F,
  

KIM
 

J
 

M.
  

A
 

novel
 

image-based
 

diagnosis
 

method
 

using
 

improved
 

DCGAN
 

for
 

rotating
 

machinery [ J ] .
  

Sensors,
  

2022,
  

22(19):
 

7534.
 

[6]
 

王炜俊.
   

融入故障诊断技术的监控设备状态监测平台的研究和

实现[D] .
  

泉州:华侨大学,
 

2021.
 

[7]
 

GAO
 

C,
  

DU
 

J.
  

Adaptive
 

heartbeat
 

mechanism
 

for
 

meteorology
 

operation
 

command
 

system
 

based
 

on
 

GPRS[C] / / Proceedings
 

of
 

2009
 

First
 

International
 

Conference
 

on
 

Information
 

Science
 

and
 

Engineering.
 

Piscataway,
 

NJ:
  

IEEE,
  

2009:
 

2522-2525.
 

[8]
 

YAN
 

K,
  

ZHANG
 

Y,
  

YAN
 

Y,
  

et
 

al.
  

Fault
 

diagnosis
 

method
 

of
 

sensors
 

in
 

building
 

structural
 

health
 

monitoring
 

system
 

based
 

on
 

communication
 

load
 

optimization[J] .
  

Computer
 

Communications,
 

2020,
 

159:310-316.
 

[9]
 

何天放,
 

王锴,
 

徐皑冬,
 

等.
  

基于边云协同的温度仪表漂移故

障诊断方法[J] .
  

仪表技术与传感器,
 

2022
 

(6):88-94.
 

[ 10]LONG
 

G,
  

LI
 

D
 

H,
 

YU
 

L
 

L,
 

et
 

al.
 

Sensor
 

drift
 

fault
 

diagnosis
 

for
 

chiller
 

system
 

using
 

deep
 

recurrent
 

canonical
 

correlation
 

analysis
 

and
 

k- nearest
 

neighbor
 

classifier [ J] .
 

ISA
 

Transcations,
 

2021,
 

122:232-246.
 

[11]陈文强,
 

刘阳,
 

丁晓喜,
 

等.
  

轴承云边协同监测系统[ J] .
  

轴

承,
 

2022
 

(12):66-73.
 

[12]段倩,
 

周华春,
 

刘颖,
 

等.
 

协同式网络监测模型的研究与设计

[C] / / 全国网络与信息安全技术研讨会论文集(上册) .
 

2007:
215-221.

 

[13]SUN
 

K
 

H,
  

HUH
 

H,
  

TAMA
 

B
 

A,
  

et
 

al.
  

Vision - based
 

fault
 

diagnostics
 

using
 

explainable
 

deep
 

learning
 

with
 

class
 

activation
 

maps[J] .
  

IEEE
 

Access,
  

2020,
  

8:
 

129169-129179.
 

[14]谢润桦,
 

王滨,
 

张蕴明,
 

等.
  

面向智慧城市的物联网传感器状

态监测与可视化应用[J] .
  

物联网技术,
 

2018,
 

8(3):18-20.
 

44 智　 能　 计　 算　 机　 与　 应　 用　 　 　 　 　
 

　
 

　 　
 

　
 

　 　 　 　 　 第 15 卷　


