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摘　 要:
 

近年来,无人机技术在各个领域的应用日益广泛。 但伴随着无人机的大规模应用,如何在保障数据隐私的同时提升

无人机轨迹预测的准确性,已成为亟待解决的问题。 本文在联邦平均(Federated
 

Averaging,FedAvg)算法的基础上嵌入动态

筛选模块,提出联邦动态聚合(Federated
 

Dynamic
 

Aggregation,
 

FedDA)算法,提升多无人机轨迹预测的精度。 实验证明:当部

分客户端的训练数据存在噪声干扰或样本分布偏移等情况下,FedDA 算法比其它联邦学习算法预测精度提升 10. 4%,对于隐

私保护场景下的无人机轨迹预测具有重要的实际应用价值。
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Abstract:
 

In
 

recent
 

years,
 

drone
 

technology
 

has
 

been
 

increasingly
 

used
 

in
 

various
 

fields.
 

However,
 

with
 

the
 

large - scale
 

application
 

of
 

drones,
 

how
 

to
 

improve
 

the
 

accuracy
 

of
 

drone
 

trajectory
 

prediction
 

while
 

ensuring
 

data
 

privacy
 

has
 

become
 

an
 

urgent
 

challenge
 

to
 

be
 

solved.
 

This
 

paper
 

proposes
 

a
 

Federated
 

Dynamic
 

Aggregation
 

(FedDA)
 

algorithm
 

to
 

enhance
 

the
 

accuracy
 

of
 

multi
-drone

 

trajectory
 

prediction
 

by
 

embedding
 

a
 

dynamic
 

screening
 

module
 

into
 

the
 

Federated
 

Averaging
 

( Federated
 

Averaging,
 

FedAvg)
 

algorithm.
 

Experiments
 

show
 

that
 

when
 

the
 

training
 

data
 

of
 

some
 

clients
 

is
 

subject
 

to
 

noise
 

interference
 

or
 

sample
 

distribution
 

shift,
 

the
 

FedDA
 

algorithm
 

improves
 

the
 

prediction
 

accuracy
 

by
 

10. 4%
 

compared
 

with
 

other
 

federated
 

learning
 

algorithms.
 

This
 

research
 

has
 

important
 

practical
 

application
 

value
 

for
 

drone
 

trajectory
 

prediction
 

in
 

privacy
 

protection
 

scenarios.
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0　 引　 言

随着无人机技术在农业、城市巡检和军事等多

个领域的广泛应用,对其轨迹进行有效预测,已成为

实现无人机在复杂环境中高效运行的关键[1] 。 目

前,针对无人机复杂环境下的路径预测,相关研究多

聚焦于技术方法的探索[2] 。 深度学习凭借强大的

特征学习能力,在训练数据充足时能很好地拟合映

射关系,特别是长短期记忆网络( Long
 

Short -Term
 

Memory,LSTM)针对时间序列数据展现出良好的预

测性能[3-4] 。 但当输入序列中存在难以确定的噪声

和干扰时,会对深度学习预测的准确性造成较大影

响,进而影响无人机执行任务的成功率[5] 。
联邦学习成为处理无人机数据的关键思路[6] 。



联邦学习通过将数据分散在各个无人机上进行训

练,并在全局模型中聚合各无人机的模型参数,避免

暴露无人机采集到的敏感感知信息,可以在保护数

据安全的前提下,共享个体模型性能[7-8] 。 联邦学

习作为“连接”工具,使得联邦成员的数据资产得以

利用[9] 。 范文等[10] 综合考虑数据新鲜程度和通信

代价等多个因素,利用联邦学习对无人机之间的协

同工作方式进行综合优化;Zhang 等[11] 制定了通信

和计算模型,以最小化通信成本实现分布式的深度

学习;Liu 等[12]使用基于部分模型聚合策略的框架,
提出了一种动态等待策略,确定每轮的聚合数;
Ghosh 等[13]构建了集群联邦学习的高效框架,交替

估计用户的聚类身份并通过梯度下降优化用户聚类

的模型参数;Mammen 等[14] 详细介绍了优化客户端

训练与服务器端聚合的方法,正逐步成为联邦学习

研究的重要方向。 Wang 等[15] 提出根据损失与样本

数量的乘积所占的比重来决定聚合权重的联邦学习

LS 算法,实现对电力负荷的准确预测,但是此方法

对权重的计算方法相对固定。
本文针对多无人机轨迹预测问题,构建泛化性

能更强的联邦学习框架。 该框架不仅仅关注客户端

的损失值和样本数量的权重分配,还设计了自适应

的动态取舍机制。 通过动态分组和基于评价指标的

筛选,系统可以自动调整对不同客户端的关注度,从
而有效地缓解低质量客户端对整体模型的负面影

响,进一步提高了算法的鲁棒性和适应性。 通过评

估改进后的联邦学习算法在预测无人机轨迹的精度

变化,探讨融入动态筛选模块对模型预测精度的影

响。

1　 算法理论与模型设计

1. 1　 多任务学习长短期记忆网络模型

联邦学习的无人机客户端使用的是多任务学习

长短期记忆网络模型 ( Multi - Task
 

Learning
 

Long
 

Short-Term
 

Memory,MTL-LSTM),相对于传统的循

环神经网络,LSTM 模型能够更好地解决长序列的

依赖关系问题,并且能够通过学习历史数据的长期

变化趋势,结合实时观测值来完成预测[16] 。
LSTM 的组成:输入 X t、 隐藏状态 ht、 遗忘门

G ft、 输入门 G it、 候选细胞状态 G c~ t、 输出门 Got, 具

体结构如图 1 所示。
　 　 LSTM 的计算主要包括遗忘门、输入门、输出门

3 个核心计算[17] 。 遗忘门作为信息过滤的首道关

卡,通过 Sigmoid 激活函数计算上一时刻隐藏状态

与当前输入的线性组合,输出值在(0,1)区间内,计
算公式如下:

G ft = σ[Wf(ht -1,X t) + bi]
 

(1)
　 　 其中,与各个门带相同下标的矩阵 W 和 b 表示

对应门神经元的权重和偏置, σ(·) 表示 Sigmoid 激

活函数。

神经网络层 逐点运算 向量转移 向量连接 向量复制

图 1　 LSTM 网络结构图

Fig.
 

1　 LSTM
 

network
 

architecture
 

diagram

　 　 输入门负责筛选当前输入的有效信息,同样采

用 Sigmoid 激活函数生成输入信息的保留比例,计
算公式如下:

G it = σ[Wi(ht -1,X t) + bi]
 

(2)
　 　 同时,通过 tanh 激活函数生成候选记忆单元,
计算公式如下:

G c~ t
= tanh[Wc(ht -1,X t) + bc] (3)

　 　 其中, tanh(·) 为 tanh 激活函数,将输出限制

在( -1,1)之间,☉表示元素乘积。
细胞状态更新,结合遗忘门和输入门的结果,计

算公式如下:
C t = G ft☉C t -1 + G it☉G c~ t

 (4)
　 　 输出门则控制当前细胞状态的输出比例,通过

Sigmoid 激活函数决定输出信息的比例,再与经过

tanh 激活的细胞状态相乘得到最终输出,计算公式

如下:
Got = σ[Wo(ht -1,X t) + bo] (5)

ht = Got☉tanh(C t) (6)
　 　 LSTM 通过几个门的控制,使得细胞状态记住

需要长时间记住的重要信息,忘记不重要的信息,并
将最终产生当前时刻的输出 ht。

在此基础上构建的 MTL-LSTM 预测模型,通过

共享层机制进一步提升了多任务学习的效率。 首

先,利用共享层提取跨任务的共性特征表示;其次,
将共享层的输出分别传递至 3 个独立的输出层,用
于预测无人机的三维坐标 x、y、z。 这种架构设计使

得不同任务能够通过共享底层特征表示,有效降低

模型的过拟合风险[18] 。 MTL-LSTM 网络框架如图
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2 所示。

特有层 全连接层 全连接层 全连接层

LSTM层

轨迹数据预处理

三维坐标数据

共享层

预测X 预测Y 预测Z

图 2　 MTL-LSTM 网络框架

Fig.
 

2　 MTL-LSTM
 

network
 

framework

1. 2　 联邦学习框架

在 MTL-LSTM 基础上构建的联邦学习系统是

由一个服务器端和 K 个客户端(无人机)两个部分

组成。
联邦学习过程:
(1)客户端基于本地数据集训练模型:每台无

人机客户端基于 MTL-LSTM 使用区域的路径数据

来训练模型,客户端 k 的优化问题可以表示为:
θ∗ = argminθk

Lk(θk) (7)
　 　 其中, θk 为第 k个客户端的本地模型参数; lk 为
损失值; Lk(θk) 为损失函数。

通过梯度下降优化算法更新本地模型参数 θk。
(2)客户端向服务器端上传本地模型参数:完

成本地模型训练后,客户端将本地模型参数 θk 上传

至服务器端。
(3)服务器端利用本地模型计算全局模型:服

务器端收到来自所有客户端的本地模型参数 θk, 利

用不同的聚合算法将这些参数聚合为全局模型参数

θ′, FedAvg 算法的参数聚合公式为:

θ′ = ∑
k∈K

mk

m
θk (8)

　 　 其中, m 为被选中的所有客户端的数据样本总

数, mk 为第 k 个客户端的数据样本数。
(4)客户端更新全局模型:服务器端将计算得到

的全局模型参数 θ′ 发送回每个客户端,客户端使用该

全局模型参数来更新自己的本地模型 θk ← θ′。
联邦学习的训练流程将重复上述 4 个步骤,直

至满足收敛条件[19] 。 收敛的条件取决于中心端配

置,例如使用迭代次数 r 作为收敛条件或全局模型

的收敛误差小于某一阈值。
1. 3　 动态筛选 FedDA 联邦学习算法

针对部分无人机客户端因数据质量不佳而影响

整体模型精度下降的问题,本文提出 FedDA 算法,

通过动态取舍机制优化聚合过程,实现模型鲁棒性

的提升。
FedDA 算法的详细步骤:
首先,在客户端本地的训练过程中会计算每个

任务的损失并保存在验证集上获得最小损失的模

型,因此在分配权重时可以考虑损失值的大小;其
次,归一化客户端的损失值 lk 与样本数量 mk, 使得

l′k 与 m′
k 具有同等重要性,公式为:

l′k =
lk - lk min

lk max
- lk min

(9)

　 　 m′
k 的归一化方法与 l′k 相同,再通过加权评价指

标计算每个客户端的加权评价指标( Weighted
 

Eval
 

Metrics,WEM),公式为:

WEMk = 0. 7 1
l′k

+ 0. 3m′
k (10)

　 　 根据求出的加权评价指标定义每一轮迭代过程

中的客户端加权评价指标基准 WEM, 公式为:
 

WEM =
∑
k∈K

WEMk

K
(11)

　 　 基准将无人机客户端分为高质量组和低质量组

两组,此时仅筛选出高质量组的模型参数 θ·k 参与聚

合,聚合公式为:

θ′ = ∑
k∈K

WEMk

∑WEM′
k

θ·k
 (12)

　 　 ∑WEM′
k 为高质量组的加权评价指标的累加

和。
FedDA 算法的聚合过程如图 3 所示。

高
质
量
客
户
端
参
与
聚
合

聚
合
后
反
还
给
所
有
客
户
端

模型参数聚合

聚
合
后
反
还
给
所
有
客
户
端

高
质
量
客
户
端
参
与
聚
合

客户端

客户端1

模型参数 模型参数

步骤d

步骤b

步骤c

步骤a

指标基准筛选

服务器端

客户端k

图 3　 FedDA 算法的聚合过程

Fig. 3　 Aggregation
 

process
 

of
 

the
 

FedDA
 

algorithm

　 　 由于该算法在每一轮迭代中动态地选择参与聚
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合的客户端,整个系统在训练过程中具有性能动态

提升的潜力,使算法能够更好地适应数据分布的变

化和模型性能的波动,提高了模型的鲁棒性。

2　 实验环境与评价指标

2. 1　 数据集

本文实地采集了 20 条无人机路径数据,记录每

一次运动轨迹的经度、纬度和高度数据构成路径预

测数据集,用以训练和验证路径预测网络模型。 本

次实验设置 4 个客户端,每个客户端拥有 5 条无人

机路径数据,对数据归一化处理之后,按照 3 ∶ 1 ∶ 1
划分原则分为训练集、验证集和测试集。
2. 2　 实验环境

基于 PyTorch 深度学习框架进行无人机轨迹预

测实验,使用的配置 Intel
 

Core
 

i5-7300HQ 处理器和

NVIDIA
 

GeForce
 

GTX
 

1050
 

Ti 显卡的电脑,网络训

练优化方法选择 Adam,学习率设为 0. 001,批量大

小设为 128。
2. 3　 评价指标

在无人机目标轨迹预测时,三维坐标 x、y、z 由

独立输出层输出,因此分别取三维方向坐标的预测

值与真实值相比较,最后求评价指标结果的平均值。
本实验的评价指标:
(1)均方误差( Mean

 

Squared
 

Error,MSE):用于

衡量预测模型的表现,计算公式为:

MSE = 1
n ∑

n

i = 1
(y′

i - yi) 2 (13)

　 　 其中, yi 为第 i 个样本数据的实际值; y′
i 为第 i

个样本数据的预测值; n 为样本数据的数量。
MSE 的值越小,表示预测结果与真实值之间的

偏差越小,模型的预测效果越好[20] 。
(2 ) 均 方 根 误 差 ( Root

 

Mean
 

Square
 

Error,
RMSE):衡量预测值与真实值之间的偏差程度,是
预测值与真实值之差的平方和的平方根,RMSE 值

越小表示模型预测效果越好[21] ,计算公式为:

RMSE = 1
n ∑

n

i = 1
(y′

i - yi) 2
 

(14)

　 　 ( 3 ) 平 均 绝 对 误 差 ( Mean
 

Absolute
 

Error,
MAE):指各次测量值的绝对偏差绝对值的平均值,
可以避免误差相互抵消的问题,因而可以准确反映

实际预测误差的大小[22] 。 MAE 的值越小表示模型

预测效果越好,计算公式为:

MAE = 1
n ∑

n

i = 1
| y′

i - yi | (15)

　 　 (4)决定系数(R-squared, R2):用于判断模型

的好坏,R2 越趋近于 1 表示模型拟合效果越好:

R2 = 1 -
∑

n

i = 1
(y′

i - yi) 2

∑
n

i = 1
(y- i - yi) 2

(16)

　 　 其中, y- i 表示均值。

3　 实验结果与分析

分别使用 FedAvg 算法、LS 算法和本文提出的

FedDA 算法预测无人机轨迹,训练网络时设置聚合

次数为 5 次,每轮聚合之前本地网络训练 5 次,结果

见表 1 ~表 4。
表 1　 客户端 1 的算法预测评估

Table
 

1　 Algorithm
 

prediction
 

evaluation
 

for
 

client
 

1

算法 MSE RMSE MAE R2

FedAvg 8. 822 2. 970 2. 107 0. 750

LS 0. 695 0. 834 0. 614 0. 967

FedDA 0. 677 0. 823 0. 517 0. 974

表 2　 客户端 2 的算法预测评估

Table
 

2　 Algorithm
 

prediction
 

evaluation
 

for
 

client
 

2

算法 MSE RMSE MAE R2

FedAvg 6. 616 2. 572 1. 707 0. 779

LS 1. 407 1. 186 0. 763 0. 968

FedDA 1. 222 1. 105 0. 664 0. 976

表 3　 客户端 3 的算法预测评估

Table
 

3　 Algorithm
 

prediction
 

evaluation
 

for
 

client
 

3

算法 MSE RMSE MAE R2

FedAvg 6. 764 2. 601 2. 033 0. 175

LS 5. 883 2. 425 1. 809 0. 401

FedDA 4. 662 2. 159 1. 644 0. 461

表 4　 客户端 4 的算法预测评估

Table
 

4　 Algorithm
 

prediction
 

evaluation
 

for
 

client
 

4

算法 MSE RMSE MAE R2

FedAvg 8. 849 2. 907 2. 027 0. 549

LS 1. 177 1. 085 0. 757 0. 955

FedDA 0. 867 0. 931 0. 641 0. 959

　 　 从表 1 ~ 4 可知,在联邦学习系统中,一旦出现

异常客户端,其数据会直接对整体模型的性能产生

负面影响。 传统的 FedAvg 算法由于缺乏针对性的

异常处理机制,已难以适应这种场景;而 FedDA 算

法则能够通过有效的筛选机制识别出异常客户端,
从而避免异常数据对全局模型造成干扰。 在所有无

人机客户端的轨迹预测任务中,与 LS 算法相比,

021 智　 能　 计　 算　 机　 与　 应　 用　 　 　 　 　
 

　
 

　 　
 

　
 

　 　 　 　 　 第 15 卷　



FedDA 算法的性能指标均有显著改善:MSE 平均降

低 15. 7%,RMSE 平均降低 8. 3%,MAE 平均降低

13. 3%, R2 平均提升 4. 2%。

4　 结束语

在联邦学习系统中,传统的聚合策略会导致全

局模型质量受到参与训练客户端的影响。 为了提高

模型精度,本文提出具有客户端选择策略的 FedDA
联邦学习算法。 利用损失值和数据量动态调整客户

端的聚合条件,经多种评价指标验证,该算法提升了

模型的预测精度和模型鲁棒性,对保障隐私安全情

况下的多无人机轨迹预测具有实际意义。 未来工作

将集中研究联邦学习过程中降低通信开销的方法,
以进一步提升训练效果。
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