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Multi UAV trajectory prediction algorithm based on Federated Learning
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Abstract: In recent years, drone technology has been increasingly used in various fields. However, with the large — scale
application of drones, how to improve the accuracy of drone trajectory prediction while ensuring data privacy has become an urgent
challenge to be solved. This paper proposes a Federated Dynamic Aggregation ( FedDA) algorithm to enhance the accuracy of multi
—drone trajectory prediction by embedding a dynamic screening module into the Federated Averaging ( Federated Averaging,
FedAvg) algorithm. Experiments show that when the training data of some clients is subject to noise interference or sample
distribution shift, the FedDA algorithm improves the prediction accuracy by 10. 4% compared with other federated learning
algorithms. This research has important practical application value for drone trajectory prediction in privacy protection scenarios.
Key words: UAV; Federated Learning; dynamic screening; FedDA algorithm
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Table 1 Algorithm prediction evaluation for client 1

R =1 (16)

Bk MSE RMSE MAE R?
FedAvg 8.822 2.970 2.107 0.750
LS 0. 695 0.834 0.614 0.967
FedDA 0.677 0.823 0.517 0.974

R2 B2 WEEBRNITEG

Table 2 Algorithm prediction evaluation for client 2

Rk MSE RMSE MAE R>
FedAvg 6.616 2.572 1.707 0.779
LS 1. 407 1.186 0.763 0. 968
FedDA 1.222 1.105 0. 664 0.976
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Table 3 Algorithm prediction evaluation for client 3

Rk MSE RMSE MAE R2
FedAvg 6. 764 2. 601 2.033 0.175
LS 5. 883 2.425 1. 809 0. 401
FedDA 4.662 2.159 1. 644 0. 461
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Table 4 Algorithm prediction evaluation for client 4

Bk MSE RMSE MAE R2
FedAvg 8. 849 2.907 2.027 0.549
LS 1.177 1. 085 0.757 0.955
FedDA 0. 867 0.931 0. 641 0.959
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