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Improved DeeplabV3plus road scene segmentation algorithm
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Abstract: Road scene segmentation is a basic task of autonomous driving perception system. In order to solve the problem that the
accuracy of the DeeplabV3plus model is not enough in road scene segmentation, especially for the lack of accuracy of small target
segmentation, an improved DeeplabV3plus model with attention mechanism is proposed, and the overall structure of the model is an
asymmetric encoder—decoder architecture. In terms of encoders, the original encoder Xception is replaced with ResNet50, and the
encoder uses dilated convolution to increase the receptive field to improve the feature extraction ability. The decoder is a self -
designed Upsample—Concatenation—Attention module, which fuses deep features with shallow features and uses bilinear interpolation
for upsampling, which improves the clarity of the boundary contour of the feature map and makes it easier to capture small targets.
Increase the model’s focus on important goals. Experimental results show that on the dataset composed of Cityscape dataset and
self-built dataset, the mean Intersection over Union ratio index is increased by 2. 6% , and the pixel accuracy is increased by 0. 9%.
The IoU index for pedestrians and non—motorized vehicles with small targets and small numbers in the road scene is increased by
3.2% and 4. 3%, and the segmentation accuracy of the drivable area is increased by 2%, which more accurately obtains road
information and provides more information for the autonomous driving perception system.

Key words: road scene segmentation; attention mechanism; DeeplabV3plus

0 3 = ABHAT T S BRI EIE S A B g
- B AGREEANT 52— ,,\Eﬁﬁiﬁ{iﬂ&ﬂ??ﬁ
BEE TR BOR B B, A S B BRI akFe ) Sk TR A ) I 7 S T I A

E£WmA . MRS (BEE ZK2022135) ,

TEE B FRmiE(1994—) 53 Bt RBMFIE 7 1) ALAs 20, BR AL BE; EHR (1998—) , B3, i+, T ZEWF5T J7 0] . H Akl , BRI R 25
XUEERAN(1998—) , 5, i+, E BT Iy . R IR,

BEEE. T B(1968—) % Wit , ##% , FEWF I AL, FR AL, Email: ee. yning@ gzu. edu. cn,

Wr# B #A: 2024-02-29 YT IR v 7oA £ b & Al




88 oo ®m M5 M OH

ERRES

HAUSRPERE 2 T IR~ T Y7 L BLE WA A 3)
RN AT B R B 43 1 45 SR RE
Ak R et E EmER, ETHRKERS
O 4 T DR SR L ORAIEAT A2 e 4, TR, BT RS T Y
B TR T A AR R G A R E
X,

Shelhamer %> 3 F 4 % B 4 W 4% FCN
(Fully Convolutional Network ) , 5 {543 E4T: 55 717 £
TR e B, BT IR T Lo
TIERE T AL G I 7 v, AATERS B St T
FAETE, [ B0 53 A PR g LA S Y A (BT
T I 1% Z2 PR, 1 an 28 SRz P A 1, BN SUE BN
FEO A S ERE BE A ), A 22 A
U-Net, SegNet k1832 1) 2 i 75 — i 1 25 2R AL BT AR |
M A TR 2 U U RS 2 U SUE S
B F RAET RN WE Hir 1T XUFEE
NI AFAFE S 8 73 FIRCR . 55— 28Rtk 5 2243k
1B Chen 2513 45 H Y Deeplab R I % 51
BOHBIAE VI A gl AT I IR TR A A AN
SRR AR PERAETHR T YRR T &M
BHESZ Y T AE V2 JRA R 51T 235 25 6] 4 7
Ak, ASPP ( Atrous Spatial Pyramid Pooling ) 4k |
PRI AT IR TS A2 K 3 A B I AR 48
AR LA AN ) RUBE B A5 2, 3558 1 0 28 % T A8 [+)
JUBEE H A5 B9 00 BE J7° 5 1M DeeplabV3plus FRAS 78
JEURETRURERN b5 1T — A TR B A0 A B A% 254 TR
RIREAE Rl 70 2 U SCRAE , AT 3R A5 P BE 1)
FET-, TR TS I PERE 1 2 TARISR Bl SE H:
BT

DeeplabV3plus # A1 B AR 1 AT — > f] 5 1Y fi%
T eSS R FRE  HIZ s g R T — k)2
FROEZEATRE G, ROIE 238 BRI 5 B 2K X T8
o3/INARRAIAT N BB A A5 B 23 Al AT 3 X
FUIRAE R e R AT o0 v 2 1R A T 4
B WA —E RCR SRR 2 RAAE (8 T T A 5847
HAEH T 8 A5 16 15 P RFERIRAE, H 16 1589 &
SRAFA A0k v el A 00 4 458 2 8 4 e A L 5 A iR
JRRHIE B R A B AR SR R A O 22
7 AR ) ] 25 2R 261 7E BE (Y DeeplabV3plus
BRI T 38 1 1 2 AL IS TR RIRCR

TER LAY TARAT 2 T T 1)
SE ( Squeeze —and —Excitation ) 7 & JJ AL , & F 25 0]
W IETE 2 J1 ) CBAM ( Convolutional Block Attention
Module) ¥ % 71 ML, w5 20 18 7 7 1 Bl ECA

( Efficient Channel Attention ) 45 5% , 3 & 1 2 J1 WL
FEST B R P A R B T R B I R SR
SE, ECA £ & J1 AL JC ¥ 4l 418 == 18] i B 1% &,
CBAM JC ¥4 Hff i 1 i B K #t, A 7 & 7 (Self -
Attention , S—A ) MLl 5E 18 55 4 (1) i o< IR 2 4[]
R AR S5 R T A THSEAR A, Hou A5 42 1
T P AL BRI B T (Coordinate Attention,
CA) BLT] , FEAFAE P 58 5 1o AT AL AR | 75 0
2R REME AT IR B A 5C 28, AN S fol o) 295 B o 2R £
TSGR DI, TR SUINT AR P,

A SCK R DeeplabV3plus 5578 5 i i 27 2547 1
FORT BT BERAE S IR B0 I AV 2 R IE AT
flE (75 2% BEAS 7040 F) FHAIRZ U SUE R X/
B2 RBEAE B BRI A4 m i B3 LARCR Y
TRBE T IS G 25 2R SRR, 320 58 S JI0 s T
TEFATIRZ U AR B 5 2 G SUE B Rla
IMAER TR CA TR I ALH, 67 ™ 2 S0 R £ 1
JREGHR X S, 220 W 75 A B AR 2

1 DeeplabV3plus 1&#!

DeeplabV3plus BRI GEASH 0 43 FIGE T, )
Z RN T A EUESS b G 22 248 K, T2
FEREJRIRR , B A BB R AR G B g — i
i 2% ( Encoder—Decoder) 2844 , WE 1 Fios

Image
Encoder 1x1 Con
1X1 Con
R=12
Atrous Conv 3%3 Conv v
Xception R=2(4)1m 1 Cony
3%3 Conv
=36
Image
P(mhé;l
Decoder UI’T' npl
Upsample
1x1 Conv Concat g:ri pﬁilzp ¢

Prediction

El 1 DeeplabV3plus #8454
Fig. 1 Structure of DeeplabV3plus model
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Fig. 2 Structure of improve DeeplabV3plus model
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Table 4 Detection performance of different models

mloU =

LY mloU/ % PA/% SRt/ 10°
U-Net 74.3 93.1 17.26
Lraspp 75.1 93.6 3.21

DeeplabV3plus 84.2 96.2 39.75
AR AL 86.8 97.1 44.19

3.4 RCEETEREIXTLL LI

S22 B DeeplabV3plus X F #5453/ H b5
TN BOEPS A5 R vl AT X B4 TR 0 A
UERGHE . T Lo RIE S5 v, T 28 T 25 SR ) RS ity 32

(a) Cityscape S8 B

5 mloU 58 AH G , BCah i i 455 2 7 s — 28001 A

R BEXT LU AR L 5, AT WX T4 — 25, itk fm

FRORIR e T IR, RS, X T FARE N K 45

DEIAT N SAERLSD 22800 b, Otk e AR o3 5 e

JERERY 3. 2% ,4. 3% , PR RLE mloU 1 PA 4

i ad ol s i SRR 2. 6% ,0. 9%

x5 HHAIEERIEIRITLL

Table 5 Comparison of model metrics before and after improvement
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Fig. 7 Comparison between DeeplabV3plus and improved models



511 4] WRIIAE,

2. B DeeplabV3plus AYIE #5040 F Bk 93

3.5 AEEFEANHTLEE

jﬂ%ﬁ CA 1= JTHLHIA Rk, 43 3 5E

HREHLEI R SE FERE AR, 3T lEﬂﬂEnz_
ﬁ& AL CBAM & ML, JC i 2 AL
HCA TR IHL AT L2 5 ﬁﬁ@%%+f
ek 5 T B T HLE B R RFR 2 S MyModel , %
ke,
F6 FEEEAVHMILER

Table 6 Comparison results of different attention mechanisms
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