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A fatigue recognition method for workstation operations based on multi—-data fusion
JIANG Ziqi, CHEN Jian, SUN Xiaoguang

(School of Mechanical Engineering, Yangzhou University, Yangzhou 225100, Jiangsu, China)

Abstract: A fatigue recognition method based on multi—data fusion is proposed to address the issue of occupational fatigue in
workstation operations. Firstly, the facial features of the operators are extracted using the VGG - 16 image classification model.
Then, the frame feature sequences are fused using a multi-layer long short—term memory network (LSTM) to obtain facial behavior
features with temporal information. Subsequently, a recurrent neural network (RNN) is employed to extract heart rate features with
temporal information. Finally, the facial behavior features and heart rate features are concatenated and fed into a multi - layer
perceptron (MLP) for fatigue recognition. The results show that the proposed method achieves accuracies of 91.25%, 81.25%,
and 62. 5% for binary classification, ternary classification, and quaternary classification, respectively.
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Fig. 1 Facial behavior feature extraction
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Fig. 2 Heart rate feature extraction
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Fig. 3 Feature fusion and fatigue recognition model
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Fig. 4 Loss curve of the model
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Fig. 5 Accuracy curve of the model
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Table 1 Labelling of different classes using RPE values
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Fig. 6 Models’ confusion matrice
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