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摘　 要:
 

针对工位作业中产生的作业疲劳问题,本文提出了一种基于多数据融合的作业疲劳识别方法。 首先,通过 VGG-16
图像分类模型提取作业者的面部帧特征,再通过多层长短期记忆网络(LSTM)对帧特征序列进行融合,以获得带有时间信息

的面部行为特征;其次,通过循环神经网络(RNN)提取带有时间信息的心率特征;最后,将得到的面部行为特征和心率特征拼

接,通过多层感知机(MLP)进行疲劳识别。 实验结果表明,该方法在 2 分类、3 分类和 4 分类中的准确率分别为 91. 25%、
81. 25%和 62. 5%。
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Abstract:
 

A
 

fatigue
 

recognition
 

method
 

based
 

on
 

multi-data
 

fusion
 

is
 

proposed
 

to
 

address
 

the
 

issue
 

of
 

occupational
 

fatigue
 

in
 

workstation
 

operations.
 

Firstly,
 

the
 

facial
 

features
 

of
 

the
 

operators
 

are
 

extracted
 

using
 

the
 

VGG- 16
 

image
 

classification
 

model.
 

Then,
 

the
 

frame
 

feature
 

sequences
 

are
 

fused
 

using
 

a
 

multi-layer
 

long
 

short-term
 

memory
 

network
 

(LSTM)
 

to
 

obtain
 

facial
 

behavior
 

features
 

with
 

temporal
 

information.
 

Subsequently,
 

a
 

recurrent
 

neural
 

network
 

(RNN)
 

is
 

employed
 

to
 

extract
 

heart
 

rate
 

features
 

with
 

temporal
 

information.
 

Finally,
 

the
 

facial
 

behavior
 

features
 

and
 

heart
 

rate
 

features
 

are
 

concatenated
 

and
 

fed
 

into
 

a
 

multi - layer
 

perceptron
 

(MLP)
 

for
 

fatigue
 

recognition.
 

The
 

results
 

show
 

that
 

the
 

proposed
 

method
 

achieves
 

accuracies
 

of
 

91. 25%,
 

81. 25%,
 

and
 

62. 5%
 

for
 

binary
 

classification,
 

ternary
 

classification,
 

and
 

quaternary
 

classification,
 

respectively.
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0　 引　 言

工位作业是现代工业生产中常见的一种生产模

式,通常要求工人在固定的位置上进行重复的操作。
长时间的工位作业容易导致工人的疲劳,疲劳会导

致工人的反应能力下降、注意力不集中、判断失误等

问题,进而增加事故的发生概率。 此外,长期处于疲

劳状态的工人,更容易出现身体和心理健康问题,进
而影响其生活质量和工作积极性[1-2] 。 因此,识别

与预防工位作业中的疲劳问题,对于提高工作效率、
保障工人健康和安全具有重要意义。 在智能技术快

速发展的背景下,借助人工智能和传感器技术,可以

实现对工位作业疲劳状态的实时监测与识别。 识别

并解决工位作业中的疲劳问题,不仅能有效提升工

作效率与质量,更能为工人创造更安全、舒适的工作

环境,进而推动工业生产的可持续发展。

1　 相关研究

疲劳识别方法主要分为生理信号分析和行为特

征分析两大类。 基于生理信号如心率、皮肤电导、眼
动、脑电等的识别方法,通常采用心率变异性分析、
皮肤电反应特征提取、眼动追踪模式识别或脑电节



律分析等算法,可以间接推断工人的疲劳状态[3-6] 。
基于行为特征如面部表情、姿势、眨眼频率等的疲劳

识别方法[7-9] ,则主要依赖计算机视觉的面部表情

识别、姿态估计及眨眼频率检测等,可以直接判断疲

劳程度。 特征提取是疲劳识别的关键,通过从原始

数据中提取有用的特征来描述工人的疲劳状态。 在

生理信号方面,常用的特征包括心率变异性、皮肤电

导变化等。 在行为特征方面,常用的特征包括面部

表情 的 动 态 变 化、 眨 眼 频 率 的 变 化 等[10] 。
Ni

 

Zhiqiang 等[3]计算了 24 个心率变异性( HRV)特

征,并使用特征选择方法筛选出与身体疲劳相关性

较高的 11 个特征,通过训练 4 种机器学习方法,对
身体 疲 劳 进 行 分 类 并 取 得 了 高 精 度 的 结 果;
Nasirzadeh 等[11]提出了一种通过心率测量来监测工

人身体疲劳的方法,用不同的熵和统计量度从心脏

信号中提取所需特征,然后使用特征选择方法根据

特征在分类中的作用对特征进行排序,最后使用一

些常用的分类算法来识别身体疲劳;王天博[12] 通过

多导生理记录仪测量作业者的肌电信号变化,并通

过动作捕捉和力学评估获取作业者的运动学参数和

身体姿态相关指标,综合评估作业者的疲劳状态。
本文提出了一种基于多数据融合的疲劳识别方

法,通过融合面部行为数据与心率数据来识别作业

者的疲劳状态。

2　 本文提出方法

2. 1　 基于 VGG-LSTM 融合网络的时空面部行为

特征提取方法

面部行为特征提取的方法如图 1 所示, ft 表示

第 t 帧的帧特征。 首先,采用已在 ImageNet 数据集

上预训练的 VGGNet-16 网络提取每一帧的帧特征,
该网络的优势在于其采用堆叠的 3×3 卷积核和 2×2
池化层结构,通过使用小型卷积核进行深层堆叠,有
效增强特征学习能力。

其次,使用多层长短期记忆网络( LSTM) 模型

对这些帧特征进行融合,以获得带有时序信息的面

部行为特征。 LSTM 是循环神经网络(RNN)的一种

常用变体,与标准的 RNN 模型相比,LSTM 配备了

一个额外的存储单元,使模型不仅可以学习到复杂

的图像特征表示,还可以学习到复杂的时序关系,其
核心计算流程如下:

首先,LSTM 通过 3 个门控单元调节信息流,遗
忘门 ft 决定前一时刻细胞状态 ct -1 的保留程度:

ft = sigm(Wxfxt + Whfht -1 + bf) (1)

　 　 输入门 it 控制新候选值 c~ t 的写入量:
it = sigm(Wxixt + Whiht -1 + bi) (2)

　 　 输出门 ot 调节当前细胞状态 ct 到隐藏状态 ht

的转化:
ot = sigm(Wxoxt + Whoht -1 + bo) (3)

　 　 其次,状态更新,候选值
 

c~ t 由当前输入
 

xt 和前

一隐藏状态 ht -1 生成, 使用 tanh 激活:

c~ t = tanh(Wxcxt + Whcht -1 + b c~ ) (4)
　 　 细胞状态 ct  通过遗忘门与输入门的加权组合更

新:
ct = ft☉ct -1 + it☉c~ t (5)

　 　 最终隐藏状态 ht
 由输出门过滤后的细胞状态

导出:
ht = ot☉tanh(ct) (6)

　 　 其中,
 

☉
 

表示逐元素乘法,权重矩阵 W 和偏置

b 为可学习参数。
模型将提取的帧特征 ft 作为第一层 LSTM 的输

入,并且将该层输出作为下一层 LSTM 的输入,在经

过 3 层 LSTM 之后帧特征序列被逐步融合为具有长

时依赖的面部行为特征 x, 如图 1 所示。

第1帧 第2帧 第3帧 第t帧

VGGNet-16

第1层LSTM

第2层LSTM

第3层LSTM

f1 f2 f3 ft

图 1　 面部行为特征提取

Fig.
 

1　 Facial
 

behavior
 

feature
 

extraction

2. 2　 提取心率特征值方法

选取心率值的 4 个统计特征:最大值、最小值、
均值和方差值为疲劳识别的心率统计值特征。 通过

RNN 模型提取融合了时序信息的心率特征。
心率特征提取过程如图 2 所示,

 

pt 表示 t 时刻

的输入,pt =
 

[最大值,最小值,均值,方差],ht 表示

在 t 时刻的隐层状态,隐层状态向量 ht 依赖于当前

特征 pt 和前一刻的隐层状态向量 ht -1, 公式如下:
ht = tanh(Wphpt + Whhht -1 + bh) (7)

　 　 其中, Wph,bh 和 Whh 都是可学习的参数矩阵,
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tanh(·) 激活函数独立地应用到其它输入的每个元

素,提取最后时刻的隐层状态 ht 即为融合了时间信

息的心率特征。

Wph

p

Whh

Y

展开
h1

p1

p1 p2

p1

h2
Whh

Wph

ht-1 ht

p1

Wph Wph Wph

Whh

p1

pt-1 pt

ht

图 2　 心率特征的提取

Fig.
 

2　 Heart
 

rate
 

feature
 

extraction

2. 3　 特征融合与疲劳识别方法

特征融合与疲劳识别的模型如图 3 所示。 通过

特征拼接的方式对提取出的面部行为特征和心率特

征进行融合,得到融合后的特征为 G t:
G t = [h1,x] (8)

　 　 其中,[·,·]代表拼接操作。
采用多层感知机(MLP)模型进行疲劳识别,该

模型包含一个输入层,4 个隐藏层和一个输出层。
将拼接后的特征作为模型的输入,为了防止过拟合,
在隐藏层中加入 dropout 正则化,选取 p = 0. 5,即在

每次迭代的训练过程中随机丢弃一半的隐藏节点,
最后,使用 Softmax 函数来放大每个分类结果之间

的差异,以实现疲劳识别。

ht x

特征拼接

输出层

隐藏层1

隐藏层2

隐藏层3

轻度疲劳 中度疲劳 重度疲劳

输入层

图 3　 特征融合与疲劳识别模型

Fig.
 

3　 Feature
 

fusion
 

and
 

fatigue
 

recognition
 

model

3　 实验与分析

3. 1　 实验设计

为了验证模型的可行性和准确性,本文进行了

工位作业模拟实验。 实验对象为 12 名大学生(8 名

男生,4 名女生),年龄在 21 ~ 25 岁之间,健康状态

良好,作息规律。 在实验开始后,每隔 5
 

min 让实验

者根据自身的身体和生理状况填写一份问卷,评估

其主观感觉疲劳程度。 该问卷中每个问题的自觉感

知用力程度(RPE)值为 0 ~ 4,计算所有问题的 RPE
总值,确定当前的疲劳等级,并将其作为该时间段的

数据标签。 为划分疲劳等级,本文使用修改过的

Borg 量表[13]区间范围:RPE 值在 5 ~ 7,认为其处于

轻度疲劳状态[13] ;当 RPE 值在 7 ~ 13 时,认为其处

于中度疲劳状态;当 RPE 值在 13 ~ 20 时,认为其处

于重度疲劳状态。
3. 2　 数据收集

在实验过程中使用 Polar
 

H10 心率带收集实验

者的心率数据,并通过摄像头记录实验者的面部视

频数据,每个实验过程持续 3
 

h。 在每次实验完成

后,将心率数据以. csv 格式导出,将视频数据以

1
 

080
 

p,30
 

fps 的格式导出。 随后,以 1
 

min 为单位

对视频数据进行切分,并同时切分出相对应时间内

的心率数据,以确保每个样本包含视频数据和心率

数据。
为降低数据量并简化模型训练难度,对每个

1
 

min 的视频样本进行每秒钟抽取 3 帧处理,从而得

到包含 180 帧的图片序列。 同时将 1
 

min 的心率样

本等分为 6 段,提取每一段心率的统计特征,形成心

率样本统计值特征的时间序列。 本文共采集 424 组

数据样本,由于数据的缺失和异常数据,选取其中

400 组样本,并将其按 8 ∶ 2 划分为训练集和测

试集。
3. 3　 实验结果分析

模型训练过程中呈现显著的收敛趋势,模型损

失值曲线如图 4 所示,训练损失持续下降;模型的准

确率曲线如图 5 所示,分类准确率稳步提升。 值得

注意的是,训练集与测试集的损失曲线及准确率曲

线均保持高度同步,表明模型在训练过程中未出现

明显过拟合迹象,具有稳定的泛化性能。

训练集
测试集

10

8

6

4

2

0 10 20 30 40 50 60
迭代次数/次

损
失

值

图 4　 模型的损失值曲线

Fig.
 

4　 Loss
 

curve
 

of
 

the
 

model
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训练集
测试集

80

70

60

50

40

30
0 10 20 30 40 50 60
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确

率

图 5　 模型的准确率曲线

Fig.
 

5　 Accuracy
 

curve
 

of
 

the
 

model

　 　 此外,本文还重新分配数据集并训练模型,分别

对比了模型在减少一类疲劳程度(只有轻度疲劳和

重度疲劳)和增加一类疲劳程度(分别为无疲劳,轻
度疲劳,中度疲劳和重度疲劳) 下的效果,结果见

表 1。
　 　 模型在 2 分类、3 分类和 4 分类下的混淆矩阵

如图 6 所示。 从图 6 可以观察到,在不同分类任务

下 ,模型的准确率呈递减趋势,在2分类任务中,模

型的准确率为 91. 25%;在 3 分类任务中,准确率下

降至 81. 25%;在 4 分类任务中,准确率进一步下降

至 62. 5%。 在 3 分类和 4 分类任务中,不同类别之

间的聚类更加接近。 此外,从图 6 中还可以观察到,
在 3 分类和 4 分类任务中,将疲劳等级识别为相邻

等级的概率要远大于识别为相差两个等级的概率。
在 3 分类任务中,将重度疲劳识别为轻度疲劳的样

本只有 1 个,而将其识别为中度疲劳的样本有 4 个。
在 4 分类任务中,将无疲劳识别为轻度疲劳的样本

有 5 个,而将其识别为中度疲劳和重度疲劳的样本

分别只有 1 个和 0 个。
表 1　 不同类别的 RPE 值

Table
 

1　 Labelling
 

of
 

different
 

classes
 

using
 

RPE
 

values

RPE 5-7 7-11 11-13 13-15 15-20 准确率 / %

2 分类 0 0 0 0 1 91. 25

3 分类 0 1 1 2 2 81. 25

4 分类 0 1 2 2 3 62. 50

RPE5-7RPE7-11RPE11-15RPE15-20

RP
E
15
-2
0
RP

E
11
-1
5
RP

E
7-
11
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E
5-
7

RPE5-7RPE7-13RPE13-20

R
PE

13
-2

0
R
PE

7-
13

R
PE

5-
7

RPE5-15RPE15-20

R
PE

15
-2

0
R
PE

5-
15

(a)
 

2 分类　 　 　 　 　 　 　 　 　 　 (b)
 

3 分类　 　 　 　 　 　 　 　 　 　 　 　 　 (c)
 

4 分类　 　 　 　

图 6　 模型的混淆矩阵

Fig.
 

6　 Models′
 

confusion
 

matrice

3. 4　 疲劳识别方法对比

将本文提出的模型与 ANN ( Artificial
 

Neural
 

Network)、 PCA ( Principal
 

Component
 

Analysis ) +
SVMs(Support

 

Vector
 

Machines)、CNN( Convolutional
 

Neural
 

Network)3 种疲劳识别模型进行对比实验,结
果见表 2。 由表 2 可知,现有疲劳评估研究主要集

中于单一模态:一类是基于人机交互行为特征(鼠

标 / 键盘操作模式)构建疲劳识别模型;另一类是依

赖于生理信号特征如脑电图 ( EEG ) 和心电图

(ECG),都取得了较高准确率,但其单维度评估范

式难以全面捕捉疲劳的多维表征,如生理-行为协

同效应等。 本文提出心率特征与面部行为特征的融

合评估框架,通过双模态数据互补提升识别鲁棒性。

表 2　 不同疲劳识别方法对比

Table
 

2　 Different
 

fatigue
 

recognition
 

research

模型 特征来源 分类 准确率 / %

ANN[14] 键鼠数据 2 分类 81. 00

PCA+SVMs[15] EEG 2 分类 80. 00

CNN[16] ECG、EEG 2 分类 95. 10

本文提出模型 面部特征、EEG 2 分类 91. 25

　 　 现有疲劳评估研究主要集中于单一模态:一类

基于人机交互行为特征(鼠标 / 键盘操作模式);另
一类方法则依赖于生理信号特征( EEG、ECG)。 尽

管这些方法取得了较高准确率,但其单维度评估范

式难以全面捕捉疲劳的多维表征如生理-行为协同

效应)。 本文提出心率特征与面部行为特征的融合
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评估框架,通过双模态数据互补提升识别鲁棒性。

4　 结束语

本文提出了一种基于数据融合的工位作业疲劳

识别模型,通过融合作业者的心率特征和面部行为

特征,以综合评估其疲劳程度。 首先,使用 VGG-16
网络提取帧特征,通过 LSTM 网络融合时序帧特征,
生成面部行为特征;其次,利用 RNN 网络提取作业

者的心率时序特征;最后,将面部行为特征和心率特

征拼接,并输入多层感知机( MLP)完成疲劳识别。
实验结果表明,所提出模型在 3 分类中的准确率为

81. 25%。 此外,模型在 2 分类和 4 分类任务下的准

确率分别为
 

91. 25%
 

和
 

62. 50%。
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