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Abstract: In response to the problems of strong noise and weak stability in air quality data sequences, this paper proposes a
combined prediction model ( CEEMDAN-TCN-GRU) that integrates fully adaptive noise set empirical mode decomposition and
time convolutional network gated recurrent unit, aiming to improve the accuracy of hourly level prediction of air quality. Firstly,
perform CEEMDAN decomposition on the original AQI sequence to obtain multiple intrinsic modal components, in order to reduce
the complexity of the data; Secondly, calculate the permutation entropy of each component and reconstruct the components
according to their numerical values; Finally, the reconstructed sequence and six pollution indicators including PM, ., PM,,, SO,,
NO,, O,, and CO are input into the combined prediction model TCN—-GRU. TCN is used to extract temporal features and local
short—term information, while GRU captures long—term dependency information to obtain the final prediction value, improving the
model’s prediction accuracy. The experimental results show that compared with a single prediction model, the combined prediction
model proposed in this paper has better prediction performance. The model processed by modal decomposition has better prediction
performance than the undecomposed prediction model. Compared with TCN-GRU and EEMD-TCN-GRU, the root mean square
error decreased by 5. 81 and 2. 94, respectively, and the fitting accuracy increased by 10.3% and 6. 1%, respectively.

Key words: hourly air quality level forecast; adaptive noise set empirical mode decomposition; permutation entropy; time

convolutional network; gate recurrent unit
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Table 1 Statistical describe of hourly data

i i) AQL  PM,5/(pg-m™) PMyp/(pg - m™) SO,/(pg-m™) NOy/(pg-m™) O0y/(pg-m™) CO/(pg-m™)
0:00 58.88 37.05 61.21 8. 12 41.94 51.80 0.87
1.00 58.13 36. 84 59.85 8. 19 40. 20 50.24 0.87
200 57.55 36. 50 58. 60 8.21 38.81 48. 67 0.87
3.00 57.00 36.29 57.52 8.23 37.76 46.89 0.86
4.00 56.72 36.23 56.76 8.28 36. 69 45.34 0.85
5.00 56.11 36.03 56.20 8.30 35.92 43.43 0.85
6:00 56.13 36. 04 56. 10 8.34 36.09 41.12 0.86
7.00 56.52 36.33 56. 64 8.49 37.59 38.65 0.89
800 57.35 36. 66 57.99 8.93 38.30 40.39 0.92
9.00 58. 54 37.17 59. 84 9.53 35.06 49. 64 0.94
10.00 59. 60 37.26 61.58 9.98 32.21 61.37 0.94
11:00 6013 37.18 61.99 9.94 29.21 74.99 0.92
12:00  60.65 36.45 60. 32 9.72 26.24 87.69 0.89
13:.00  61.35 35.39 57.32 9.28 23.62 97.12 0.85
14.00 60. 63 34.08 54.19 8.93 22.34 102. 62 0.81
15.00  59.38 32.59 51.15 8. 64 22.28 105. 56 0.79
16:00  58.52 31.67 49.32 8.44 22.96 106. 08 0.77
17.00 57.51 31.33 48.91 8.35 24.96 103. 41 .77
18:00  56.11 31.70 49. 60 8.04 29.57 95.39 0.78
19:00  55.23 33.12 51.37 7.95 36.47 82.52 0.82
20.00 55.97 34.96 55.10 7.93 41.70 69. 98 0.85
21.00  58.32 36. 34 59.25 7.97 43.97 61.94 0.86
22.00  59.60 36.95 61.56 8.02 44.62 56.63 0.87
23.00 59.57 37.05 61.89 8.03 43.78 53.57 0.87
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Table 2 Permutation entropy values for each component
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Fig. 8 Real and predicted values of prediction model
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Table 3 Evaluation indicators for a single prediction model

Y RMSE MAE R?
TCN 22.614 5 17.510 4 0.587 3
GRU 20.364 6 14.071 1 0.655 5
EEMD-TCN 20. 604 4 16.560 9 0. 666 2
EEMD-GRU 17.738 3 13.957 6 0.768 1
CEEMDAN-TCN 14.691 9 11.364 7 0.8235
CEEMDAN-GRU 10.129 1 7.933 2 0.8329
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Table 4 Evaluation indicators for combination prediction models

B RMSE MAE R?
TCN-GRU 12.4454  7.7749  0.8739
EEMD-TCN-GRU 9.5732 6.8001  0.908 7
CEEMDAN-TCN-GRU 6.6301 4.4716  0.964 1
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