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A federated learning data augmentation algorithm for non—-independent
and identically distributed data

XIAO Huangmei, LONG Wei, HU Lingxi,JIANG Linhua

(School of Information Engineering, Huzhou University, Huzhou 313000, Zhejiang, China)

Abstract; Federated learning is an emerging distributed learning framework for privacy preservation. In this framework, client
devices perform training locally without transmitting data to a central server, effectively ensuring data privacy and security.
However, models trained in federated learning often perform worse than those trained in centralized frameworks, especially when the
data distribution of the participating clients is non —independent and identically distributed ( NIID). To address the problem of
suboptimal model training accuracy caused by NID data on federated learning nodes, this paper proposes a data augmentation method
based on generative adversarial networks ( GANs) to effectively improve model training performance without compromising user
privacy. Simulation results demonstrate that the proposed method effectively improves model accuracy and accelerates model
convergence under various NID data partitioning strategies. Compared with baseline methods, the proposed method achieves over
20% accuracy improvement in NID scenarios.
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Fig. 1 Schematic diagram of the generative adversarial network

structure
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Fig. 2 Schematic diagram of weight divergence under Non—-IID data in federated learning
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algorithm
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