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A lightweight submucosal tumor segmentation network
with deep feature constraints

ZHOU Hui', WU Junke?

(1 College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract: To solve the problem of low segmentation accuracy of submucosal tumors due to multiple layers and indistinguishable
edges, a lightweight submucosal tumor segmentation network with deep feature constraints was proposed in this paper. This method
introduced an expanded receptive field module to significantly reduce the number of model parameters while retaining feature
richness. It combined lightweight spatial-channel reconstruction convolution and parameter—free attention mechanism to improve the
feature extraction module to improve the model performance. Through the effective fusion of deep and shallow features, more
refined edge information and positioning information can be obtained. On this dataset, the proposed method achieves a mean Dice
coefficient of 0. 778, an increase of 8. 2%. The mean intersection over union score is 0. 679, an increase of 8. 3%. Various metrics,
including boundary F-measure, structural similarity, average error, maximum error, and mean absolute error have increased by 3%
to 8% , and the number of model parameters has been reduced by 54%. Experimental results validate that this method can effectively
reduce the number of parameters while improving the accuracy and detail of submucosal tumor segmentation.
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Table 1 Comparative experimental results
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Fig. 8 Comparison of segmentation results of different models on our dataset
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