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A strategy search method based on marine predator algorithm
and deep reinforcement learning

WANG Heng, BIAN Junwei, SUN Xixia

(School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)

Abstract: Deep Reinforcement Learning ( DRL) is a common strategy search algorithm with good sampling rate and learning
efficiency which performs well in solving high—dimensional problems. However, DRL cannot sufficiently explore the environment,
which makes it prone to falling into local optima. Evolutionary Algorithms ( EAs) have the advantages of strong global search
ability, and therefore, the hybridization of EAs with DRL to improve DRL performance has become a hot research topic. The EA
parts of existing evolutionary DRL ( EvoDRL) algorithms typically use traditional EAs, such as particle swarm optimization and
genetic algorithm. These traditional EAs exhibit shortcomings such as slow convergence speed. To solve this problem, this paper
integrates the Marine Predators Algorithm (MPA) , the Cross Entropy Method (CEM) , and DRL, proposing a novel MPA-CEM-
RL algorithm. This algorithm leverages the diversity experience of the MPA population to train underperforming individuals within
the population and subsequently reintegrates the trained individuals back into the population. This mechanism facilitates enhanced
information exchange between MPA and DRL. Furthermore, by incorporating the global optimization capability of CEM, the overall
search performance of the MPA-CEM-RL algorithm is further improved. The simulation results in the Mujoco physics engine show
that compared with ERL, CEM -RL, surrogate — assisted - ERL, and MPA -RL, the MPA - CEM - RL algorithm has higher
performance and better stability.
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