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摘　 要:
 

深度强化学习(Deep
 

Reinforcement
 

Learning,
 

DRL)是一种常见的策略搜索算法,具有良好的样本采样率和学习效

率,在解决高维问题方面表现优秀,但对环境的探索性不足,容易陷入局部最优。 进化算法(Evolutionary
 

Algorithm,
 

EA)具有

全局搜索能力强等优点,因此将进化算法与 DRL 结合用于提升 DRL 性能的方法成为了当前研究的热点。 现有进化深度强化

学习(Evolutionary
 

DRL,
 

EvoDRL)算法的 EA 部分大多采用粒子群算法、遗传算法等传统进化算法,存在收敛速度慢等不足。
针对该问题,本文融合海洋捕食者算法

 

(Marine
 

Predators
 

Algorithm,
 

MPA)、交叉熵方法
 

(Cross
 

Entropy
 

Method,
 

CEM)
 

和

DRL 算法,提出了一种
 

MPA-CEM-RL
 

算法,利用
 

MPA
 

种群的多样性经验训练种群中表现较差的个体,并将训练后的个体

重新插入种群,促进
 

MPA
 

与
 

DRL
 

之间的信息交互;通过引入
 

CEM
 

的全局优化能力,进一步提升了
 

MPA-CEM-RL
 

算法的

整体搜索性能。 在 Mujoco 物理引擎中的仿真实验结果表明,和 ERL、CEM-RL、Surrogate-assisted-ERL 以及 MPA-RL 算法

相比,本文提出的 MPA-CEM-RL 算法具有更高的性能和更好的稳定性。
关键词:

 

海洋捕食者算法;
 

深度强化学习;
 

进化算法;
 

交叉熵方法

中图分类号:
 

TP181 文献标志码:
 

A 文章编号:
 

2095-2163(2025)11-0075-07

A
 

strategy
 

search
 

method
 

based
 

on
 

marine
 

predator
 

algorithm
 

and
 

deep
 

reinforcement
 

learning
WANG

 

Heng,
 

BIAN
 

Junwei,
 

SUN
 

Xixia

(School
 

of
 

Internet
 

of
 

Things,
 

Nanjing
 

University
 

of
 

Posts
 

and
 

Telecommunications,
 

Nanjing
 

210003,
 

China)

Abstract:
 

Deep
 

Reinforcement
 

Learning
 

(DRL)
 

is
 

a
 

common
 

strategy
 

search
 

algorithm
 

with
 

good
 

sampling
 

rate
 

and
 

learning
 

efficiency
 

which
 

performs
 

well
 

in
 

solving
 

high-dimensional
 

problems.
 

However,
 

DRL
 

cannot
 

sufficiently
 

explore
 

the
 

environment,
 

which
 

makes
 

it
 

prone
 

to
 

falling
 

into
 

local
 

optima.
 

Evolutionary
 

Algorithms
 

(EAs)
 

have
 

the
 

advantages
 

of
 

strong
 

global
 

search
 

ability,
 

and
 

therefore,
 

the
 

hybridization
 

of
 

EAs
 

with
 

DRL
 

to
 

improve
 

DRL
 

performance
 

has
 

become
 

a
 

hot
 

research
 

topic.
 

The
 

EA
 

parts
 

of
 

existing
 

evolutionary
 

DRL
 

(EvoDRL)
 

algorithms
 

typically
 

use
 

traditional
 

EAs,
 

such
 

as
 

particle
 

swarm
 

optimization
 

and
 

genetic
 

algorithm.
 

These
 

traditional
 

EAs
 

exhibit
 

shortcomings
 

such
 

as
 

slow
 

convergence
 

speed.
 

To
 

solve
 

this
 

problem,
 

this
 

paper
 

integrates
 

the
 

Marine
 

Predators
 

Algorithm
 

(MPA),
 

the
 

Cross
 

Entropy
 

Method
 

(CEM),
 

and
 

DRL,
 

proposing
 

a
 

novel
 

MPA-CEM-
RL

 

algorithm.
 

This
 

algorithm
 

leverages
 

the
 

diversity
 

experience
 

of
 

the
 

MPA
 

population
 

to
 

train
 

underperforming
 

individuals
 

within
 

the
 

population
 

and
 

subsequently
 

reintegrates
 

the
 

trained
 

individuals
 

back
 

into
 

the
 

population.
 

This
 

mechanism
 

facilitates
 

enhanced
 

information
 

exchange
 

between
 

MPA
 

and
 

DRL.
 

Furthermore,
 

by
 

incorporating
 

the
 

global
 

optimization
 

capability
 

of
 

CEM,
 

the
 

overall
 

search
 

performance
 

of
 

the
 

MPA-CEM-RL
 

algorithm
 

is
 

further
 

improved.
 

The
 

simulation
 

results
 

in
 

the
 

Mujoco
 

physics
 

engine
 

show
 

that
 

compared
 

with
 

ERL,
 

CEM - RL,
 

surrogate - assisted - ERL,
 

and
 

MPA - RL,
 

the
 

MPA - CEM - RL
 

algorithm
 

has
 

higher
 

performance
 

and
 

better
 

stability.
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0　 引　 言

深度强化学习
 

( Deep
 

Reinforcement
 

Learning,
 

DRL)是一种结合了深度学习( Deep
 

Learning,
 

DL)

和强化学习( Reinforcement
 

Learning,
 

RL)的机器学

习算法,使智能体能够通过与环境交互来学习最优

行为策略[1] 。 其基本原理是使用神经网络或者值

函数来近似 RL 的策略, 从而解决高维问题[2] 。



DRL 因具有高样本效率和良好的学习能力,受到了

研究者的广泛关注,并在游戏、机器人和自动驾驶等

许多领域得到了广泛应用[3] 。
尽管 DRL 算法在解决高维和大规模问题方面

表现良好,但在复杂环境中的鲁棒性较低,且容易被

欺骗性奖励误导,从而陷入局部最优。 而进化算法

(Evolutionary
 

Algorithm,EA) 则具有良好的全局搜

索能力、鲁棒性、稳定性和并行性,但其采样效率较

低,不能全面利用来自环境的反馈信号和历史数

据[4] 。 进 化 强 化 学 习 算 法 ( Evolutionary
 

Reinforcement
 

Learning,
 

EvoDRL) 将 DRL 和 EA 相

结合,可以同时利用 DRL 的样本效率和 EA 的多样

性和稳健性在学术界和工业界都受到了广泛的关

注[5] 。 然而,现有 EvoDRL 算法的 EA 部分大多采

用较为简单的进化算法,如粒子群( Particle
 

Swarm
 

Optimization,
 

PSO ) 算 法、 遗 传 算 法 ( Genetic
 

Algorithm,
 

GA ) 以及交叉熵方法 ( Cross
 

Entropy
 

Method,
 

CEM)等,导致现有的 EvoDRL 算法存在收

敛精度较低、不稳定等不足[6] 。
海洋捕食者算法( Marine

 

Predators
 

Algorithm,
 

MPA) 作为一种新型的 EA,具有寻优能力强等特

点[7] 。 现有研究表明,与 PSO、GA 相比,MPA 具有

更强的优化能力。 针对现有 EvoDRL 算法存在的

EA 部分性能不足的问题,本文将 MPA、 CEM 和

DRL 算法结合,提出了一种混合 MPA-CEM-RL 算

法。 首先,融合
 

MPA
 

与
 

DRL,在每轮迭代中先通过

MPA 的进化机制更新种群;其次,使用 DRL 对种群

中适应度值较低的一半个体进行更新,若更新后个

体的适应度值优于原个体,则予以替换;为进一步提

升算法的全局搜索能力,引入 CEM 算法替代 MPA
算法,提升全局搜索能力的鱼类聚集装置

 

( Fish
 

Aggregating
 

Devices,
 

FADs)
 

效应。 最后,在 Mujoco
的 4 个典型仿真环境中进行了仿真实验,实验结果

表明:与 MPA - RL、ERL、CEM - RL 以及 Surrogate -
assisted-ERL 算法相比,MPA-CEM-RL 算法具有更

高的平均性能和更好的稳定性。

1　 相关工作

DRL 算法主要分为两类:基于值的 DRL 算法和

基于策略的 DRL 算法。 基于值的算法包括 DQN
(Deep

 

Q
 

Network,
 

DQN)、双 DQN、决斗 DQN 和彩

虹 DQN 等[8] ;基于策略的 DRL 算法包括确定性策

略梯度(Deterministic
 

Policy
 

Gradient,
 

DPG)算法、近
端策略( Proximal

 

Policy
 

Optimization,
 

PPO) 算法和

演员-评论家(Actor-Critic,
 

AC)算法等[9] 。 基于策

略的 DRL 算法具有处理连续动作空间问题的能力,
并能够自适应地学习最优策略。 因此,本文重点对

基于策略的 DRL 算法进行研究,并将其与 EA 结

合。
2015 年,Li 等[10] 将演员-评论家算法与 DQN

网络相结合,提出了一种适用于连续控制场景的

DDPG( Deep
 

Deterministic
 

Policy
 

Gradient,
 

DDPG)
算法。 与大多数 DRL 算法类似,DDPG 算法也存在

高估问题。 为了解决这个问题,Fujimoto 等[11] 提出

了双延迟 DDPG ( Twin
 

Delayed
 

Deep
 

Deterministic
 

Policy
 

Gradient,
 

TD3)算法,该算法结合了削波双 Q
学习、延迟策略更新和目标策略平滑策略,以减少高

估偏差,提高算法稳定性。
基于策略的 DRL 仍存在对环境的探索性不足,

容易陷入局部最优等问题。 进化算法因其较强的全

局搜索能力,可有效探索策略空间;在此基础上,结
合

 

DRL
 

的梯度优化机制对策略进行精调,能实现更

优的策略搜索与优化。 EA 和 DRL 算法相互协作,
从而取得更好的效果。 Bai 等[12]对进化深度强化学

习算法进行了全面综述,并将其分为 6 种类型。 其

中,一类算法利用进化算法引导 DRL,通过维持策

略种群的多样性以增强探索能力,并借助种群进化

机制生成新策略。 因此,该类算法在处理复杂的连

续控制任务时表现出显著优势。 作为该算法的典型

代表,Khadka 等[13] 开创性地提出了进化强化学习

(Evolutionary
 

Reinforcement
 

Learning,
 

ERL)算法,利
用 EA 种群产生的多样性经验训练 RL 代理,并定期

将该代理重新注入 EA
 

种群,以融入梯度优化信息。
ERL 借助 DRL 的梯度优化能力,显著提升了学习速

度并降低了样本复杂度。 此外, Pourchot 等[14] 将

CEM 和 DRL 算法相结合,提出了 CEM-RL 混合算

法。 CEM-RL 和 ERL 的区别在于其使用不同类型

的 EA 以及 EA 和 RL 之间的不同通信方法。 在

ERL 中,RL 使用 EA 的经验来计算梯度和更新策

略,并定期向 EA 发送梯度信息;CEM-RL 则直接对

EA 中的一半个体执行梯度更新。 然而,上述两种算

法在部分测试环境中性能表现不佳。 本文引入一种

更优的启发式算法,以提升 EvoDRL 的性能及其对

不同环境的适应性与泛化能力。

2　 MPA-CEM-RL 算法

Afshin[7]在 2020 年提出 MPA 算法,是一种新

颖的启发式算法,由其灵感来源于海洋适者生存理
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论,算法流程如图 1 所示。 MPA 和传统的进化算法

相比存在明显优势,因此基于 MPA 的 EvoDRL 算法

理论上具有更好的性能。

开始

初始化Prey矩阵和Elite矩阵

分阶段更新Prey矩阵并计算
个体适应度

解决涡流形成和FADs效应

评价个体适应度，生成新的Elite矩阵

判断迭代是否结束

结束

是

否

图 1　 MPA 算法流程图

Fig.
 

1　 Flowchart
 

of
 

MPA

　 　 首先,将 MPA 和 DRL 进行结合,RL 部分可以

使用任意一种 AC 算法,本文使用 TD3 算法。 在初

始化阶段,首先初始化 MPA 的猎物 (Prey) 矩阵以

及 TD3 的评价网络、目标评价网络。 Prey 是一个 m
行 n 列的矩阵,其中 m 表示种群规模,初始化方法

如下:
X ij =Xmin + rand × (Xmax -Xmin) (1)

Prey =
X11 … X1n

︙ ⋱ ︙
Xm1 … Xmn

é

ë

ê
ê
êê

ù

û

ú
ú
úú

m×n

(2)

　 　 其中, Xmin 是网络参数的最小取值; Xmax 是网络

参数的最大取值;rand 为[0,1]内的随机数。
 

其次, 将 Prey 矩阵的行向量Preyi 分别作为策

略网络 π 的参数,根据下式计算每个个体 Preyi 的

适应度(fitness)。 适应度定义为智能体在环境中执

行单次完整交互所获得的累积奖励。

fitness = ∑
steps

i = 1
ri (3)

　 　 其中, ri 是策略网络 π 在与环境的交互过程中

第 i 步的奖励,steps 表示策略在环境中运行一轮的

步数。
用 Prey 矩阵中适应度最大的个体 Preybest 初始

化 Elite 矩阵,如下式所示:

Elite =
Preybest

︙
Preybest

é

ë

ê
ê
êê

ù

û

ú
ú
úú

m

(4)

　 　 在每轮迭代中,首先根据当前代 t 所处阶段更

新 Prey 矩阵。
当 t < T / 3 时, Prey 矩阵的更新如下式所示:

stepsizei = RB 􀱋 (Elitei -RB 􀱋Preyi)
Preyi = Preyi + P × R 􀱋

 

stepsizei
{ ,

 

i = 1,…,m

(5)
　 　 当 T / 3 ≤ t < 2 × T / 3 时,Prey矩阵的更新如公

式如下:
stepsizei = RL 􀱋 (Elitei -RL 􀱋Preyi)
Preyi = Preyi + P × R 􀱋

 

stepsizei
{ ,

 

i = 1,…,m/ 2
 

(6)
stepsizei = RB 􀱋 (RB 􀱋Elitei - Preyi)
Preyi = Elitei + P × CF 􀱋

 

stepsizei
{ ,

 

i = m/ 2,…,

m (7)
当 2 ×

 

T / 3 ≤ t 时,Prey 矩阵的更新如下式:
stepsizei =RL 􀱋 (RL 􀱋Elitei - Preyi)
Preyi =Elitei + P × CF 􀱋stepsizei

{ ,
 

i = 1,…,m
 

(8)
其中, RB 是采用布朗随机游走产生的随机数组

成的 n 维向量; RL 是一个基于 Levy 分布的 n 维向

量; stepsizei 表示移动的步长; P 是一个值为 0. 5 的

常数; R 是一个由[0,1]中的均匀分布的随机数组

成的 n 维向量; t 是当前迭代次数; T 是最大迭代次

数;CF 是一个自适应参数,计算方如法下:

CF =(1 - t
T

)
(2 t

T )

(9)

　 　 Prey 矩阵更新后, 计算新的 Prey 矩阵中各个

体的适应度并将个体与环境交互过程中产生的所有

经验 ( s,a,r,s′) 存入经验缓存区 R 中, s 和 s′ 分别

代表当前状态和下一时刻的状态, a 和 r 分别代表

当前动作和从环境中获得的奖励。 选择 Prey 矩阵

中适应度较小的一半个体,分别将其作为参数注入

TD3 算法的策略网络 π 和目标策略网络 π t, 并从经

验缓存区中抽取经验对策略网络和评价网络进行梯

度更新。
TD3 中有两个评价网络和两个目标评价网络,

其更新方式如下:

y ← r + γmin
i = 1,2

Qθ′i( s′,πt( s′)) (10)

θi ←argminθi

1
N∑(y -Qθi( s,a)) 2 (11)
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　 　 其中, θ i 和 θ ′
i (i = 1,2)分别代表第 i 个评价网

络和目标评价网络的参数, γ 是折扣因子。
TD3 的策略网络的更新所采用的损失函数如下:

Jϕ( s) = -Qθ1( s,π( s)) (12)
　 　 其中, ϕ 是策略网络的参数。

TD3 中的目标网络使用软更新的方法进行参数

更新,目标评价网络和目标策略网络参数的更新方

法如下:

θ′
i ← τθi + (1 - τ)θ′

i (13)
ϕ′ ← τϕ + (1 - τ)ϕ′ (14)

　 　 其中, ϕ′ 是目标策略网络的参数。
网络更新完成后将更新后的策略网络的参数注

入 Prey 矩阵。
最后,运用 MPA 中的涡流形成和 FADs 效应阶

段进一步更新 Prey 矩阵,如下式所示:

Preyi =
Preyi + CF × [Xmin + R 􀱋 (Xmax -Xmin)] 􀱋 U,

   

　
 

　
 

if
 

r ≤ FADs
Preyi + [FADs × (1 - r) + r] × (Preyr1 -Preyr2),

 

　
 

if
 

r > FADs{ (15)

　 　 其中, U是一个包含 0 和 1 的二进制 n 维向量;
FADs 是一个影响优化过程的常数; r 是一个 [0,1]
中的随机数; r1 和 r2 是 Prey 的两个随机下标,1 ≤
r1,r2 ≤ m。

比较更新后的 Prey 矩阵中每个个体的适应度

和上一代 Prey 矩阵对应个体的适应度,保留较优的

个体, 并选择 Prey 矩阵中的最优个体重新生成

Elite 矩阵。 每轮迭代结束后,判断算法是否满足结

束条件,如果满足则退出,否则进行下一轮迭代。
MPA-RL 中的解决涡流形成和 FADs 效应的方

法本质上就是对 Prey 矩阵(种群)进行扰动,提高其

全局搜索性能,使其尽可能跳出局部最优。 CEM 方

法作为一种蒙特卡洛方法,可以有效解决高维组合优

化问题,具有较强的全局优化能力[15] 。 因此,可以将

MPA 中的用于解决涡流形成和 FADs 效应的方法替

换为 CEM 方法。 为进一步提升 MPA-RL 算法的全

局探索能力和整体性能,本文进一步将 CEM 方法和

MPA-RL 算法融合,提出了一种 MPA-CEM-RL 算

法。 在 MPA-CEM-RL 的每轮迭代过程中,首先根据

MPA 的进化机制更新 Prey 种群;其次,根据适应度

值对 Prey 种群进行排序,并将整个 Prey 种群分成两

个同等大小的子种群,pop1 和 pop2,pop1 为 Prey 种

群中适应度较优的一半个体;用 CEM 算法根据 Prey
种群生成一个新的种群 pop,如下所示:

η = ∑
k

i = 1
γiPreyi (16)

Σ = ∑
k

i = 1
γi(Preyi - η) 2 + 􀆠I (17)

popi ~ N(η,Σ) (18)
　 　 其中, η 代表种群 Prey 中适应度较大的 k 个个

体的均值;
 

γ i 表示第 i 个个体的权重,一般取
1
k

;􀆠I

表示添加到协方差中的噪声; popi 表示 CEM 生成

的新种群 pop 中的第 i 个个体,pop 的规模和 Prey

种群一致。
为更好平衡算法的全局搜索能力和局部搜索能

力,在 MPA-CEM-RL 算法进化过程的不同阶段各

子种群的角色不同,且采用不同的更新机制。 因为

在进化前期,算法更倾向于全局搜索,而 CEM 具有

非常强的全局搜索能力,因此用 CEM 对 Prey 种群

进行整体的更新可以提高对环境的探索能力,因此

在进化过程的前 1 / 3 阶段,用 CEM 生成的 pop 种群

替换整个 Prey 种群,并选取新种群中适应度较低的

一半个体进行梯度更新;因为在进化中期,算法需同

时关注全局和局部搜索,DRL 样本效率高,收敛速

度快,对于 pop2 中适应度较差的个体采用 DRL 进

行梯度更新,可以提高学习效率,而对于 pop1 中适

应度较优的个体仍采用 CEM 进行更新,可继续保持

全局搜索能力,因此在进化过程的中间 1 / 3 阶段,用

pop 中的随机的
m
2

个个体替换 pop1 中的个体,并对

pop2 中的个体进行梯度更新;因为在进化后期,算
法主要注重局部搜索,较优的 pop1 采用 DRL 进行

更新,可进一步加速收敛,而较差的 pop2 采用 CEM
进行更新则在一定程度上保留了算法的全局搜索能

力,使算法的鲁棒性和稳定性更好,因此在进化过程

的后 1 / 3 阶段,用 pop 中的随机的
m
2

个个体替换

pop2 中的个体,对 pop1 中的个体进行梯度更新。
MPA-CEM-RL 算法的伪代码如算法 1 所示。

算法 1　 MPA-CEM-RL
输入 　 算法在环境中运行的最大步数 max _

steps,MPA 种群的大小 m, 评价网络参数 θ 和目标

评价网络参数 θ′, 批经验的大小 mini_batch
输出　 种群中最优策略的累积奖励

1. 初始化 MPA 算法的 Prey 矩阵和 Elite 矩阵

2. 初始化评价网络 Qθ 和目标评价网络 Qθ ′
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3. 初始化一个空的经验缓存区 R
4. 初始化 total_steps = 0
5. while

 

total_steps<max_steps:
6. 使用 MPA 算法的分段优化策略更新 Prey矩

阵

7. actor_steps = 0
8. for

 

i ← 1
 

to
 

m:
9. 将 Preyi 作为策略网络 π 的参数,评价策略

网络 π 在环境中运行一轮的适应度 fitness 和步数

steps,并将收集到的经验存入 R 中,actor_steps + =
steps

10. end
 

for
11. total_steps+ = actor_steps
12. 根据适应度将 Prey 矩阵进行排序,并根据

当前代所处进化阶段用 CEM 对种群进行优化

13. for
 

i ← 1
 

to
 m
2

: / / 根据当前代所处进化阶段

选取
m
2

个个体进行策略更新

14. 将策略网络 π 和目标策略网络 π t 的参数都

设置为 Preyi

15. 从 R 中抽取
2 × actor_steps

m
批经验训练评

价网络 Qθ

16. 从 R 中抽取 actor_steps 批经验训练策略网

络 π
17. 将 Preyi 更新为训练后的策略网络 π 的参

数,并重新计算适应度

18. end
 

for
19. 保留海洋记忆, 更新 Prey 矩阵,并根据适

应度最优的个体生成新的 Elite 矩阵

20. end
 

while

3　 仿真实验与结果分析

实验环境: Nivida
 

GeForce
 

RTX
 

3060ti
 

GPU、
 

Intel(R)
 

Core(TM)
 

i5-12600KF 和 Win11 系统。 为

了验证本文提出的算法的有效性,使用 Mujoco 物理

引擎中的 4 个连续控制任务 HalfCheetah-v2、Hopper
-v2、Walker2d-v2 和 Swimmer-v2 进行仿真实验,各
环境的动作维度和状态维度见表 1[16] 。
　 　 本文选择 ERL、CEM-RL 以及 ERL 的改进算法

Surrogate-assisted - ERL[17] 作为对比算法。 实验中

各算法采用的超参数值见表 2,各算法在各实验环

境中均训练 1
 

000
 

000 步。

表 1　 Mujoco 物理引擎中各环境的动作维度和状态维度

Table
 

1　 Action
 

and
 

state
 

dimensions
 

of
 

each
 

environment
 

in
 

the
 

Mujoco

环境 动作维度 状态维度

HalfCheetah-v2 6 17

Hopper-v2 3 11

Walker2d-v2 6 17

Swimmer-v2 2 8

表 2　 实验中各算法采用的超参数值

Table
 

2 　 Hyperparameter
 

values
 

used
 

in
 

each
 

algorithm
 

in
 

the
 

experiment

参数 值

评价网络的隐藏层数 2

策略网络的隐藏层数 2

评价网络隐藏层的神经元个数 250

策略网络隐藏层的神经元个数 250

策略网络隐藏层的激活函数 Tanh

策略网络输出层的激活函数 Tanh

评价网络隐藏层的激活函数 Relu

评价网络输出层的激活函数 None

优化器 Adam

评价网络的学习率 0. 001

策略网络的学习率 0. 001

每批抽取的经验数 mini_batch 256

折扣因子
 

γ 0. 99

目标网络软更新权重
 

τ 0. 005

经验缓存区大小 1
 

000
 

000

种群大小 10

　 　 鉴于 EvoDRL 算法存在随机性,本组实验中每

个算法在每个实验环境中执行 5 次,记录每种算法

的 5 次独立试验的平均值,以衡量其性能。 本文将

第 t 轮中群体中最佳个体的性能视为所有进化深度

强化学习算法在第 t 轮的性能。
　 　 5 种算法在 4 个环境中的最佳适应度曲线如图

3 所示,曲线的阴影部分为 5 次实验的标准差,横坐

标表示算法在环境中运行的步数,纵坐标表示种群

中最 优 个 体 的 适 应 度。 由 于 Walker2d - v2 和

Hopper-v2 的每一轮迭代与环境交互的步数是可变

的,因此以 20
 

000 步为间隔,将每段间隔中最优的

一轮性能作为该间隔的性能。 从图 2(a)可以看出,
在 HalfCheetah-v2 环境中,MPA-RL 算法优于 ERL
及 Surrogate-assisted-ERL 算法,但是和 CEM-RL 算

法相比存在差距;而融合了 CEM 的 MPA-CEM-RL
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算法的性能明显优于 MPA-RL 算法,且从曲线上可

以看出 MPA-CEM-RL 在性能上优于 CEM-RL;从
图 2(b)可以看出,在 Hopper-v2 环境中,CEM-RL、
MPA-RL 和 MPA-CEM-RL 算法的最终性能比较接

近,都明显优于 ERL 算法,Surrogate -assisted -ERL
的性能也较好,但和本文提出的 MPA-CEM-RL 相

比仍存在一定差距; 从图 2 ( c) 中可以看出, 在

Walker2d-v2 环境中,CEM-RL 的算法性能的波动

较大,但峰值较高,而 MPA-RL 因为保留了海洋记

忆,即当前的 Prey 种群和上一代 Prey 种群进行比

较,保留两个种群中对应个体中较优的一个,所以

MPA-RL 的算法性能是非递减的,MPA-RL 的标准

差更小、更加稳定,但最佳适应度的峰值没有 CEM-
RL 高,MPA-CEM-RL 算法综合了 CEM-RL 的收敛

性和 MPA-RL 的稳定性等优点,不仅具有最高的最

佳适应度峰值和较小的标准差,而且性能曲线是稳

定上升的;从图 2( d)中可以看出,CEM-RL 算法在

Swimmer-v2 环境中的性能较差,ERL 算法具有较优

的性能,本文提出的 MPA-CEM-RL 算法性能最好,
因为 DRL 方法会提供欺骗性的梯度信息,不利于网

络参数的收敛,由于 ERL 尽可能保持 EA 的探索性,
而 CEM-RL 算法则可以利用更多的梯度信息,可能

会导致干扰,从而使 CEM-RL 在 Swimmer-v2 中的

性能不佳。
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图 2　 5 种算法在 4 个环境中的最佳适应度曲线

Fig.
 

2　 Optimal
 

fitness
 

curves
 

of
 

five
 

algorithms
 

in
 

four
 

environments

　 　 MPA-CEM-RL 可以在重复利用梯度信息的同

时还可以避免错误梯度信息的干扰,具有更高的稳

定性。 综上,在多种 Mojuco 连续任务环境中,本文

提出的 MPA-CEM-RL 算法和目前主流的几种进化

深度强化学习算法相比,其性能优势明显。

4　 结束语

本文提出了一种结合 DRL 和启发式优化算法

MPA、CEM 的进化强化学习算法 MPA -CEM -RL。
首先,融合 MPA 与 DRL 算法,使用 MPA 生成初始

种群,并将种群个体与环境交互产生的经验数据存

入经验回放缓冲区;其次,从该缓冲区采样数据,运
用 DRL 对种群中的部分个体进行梯度更新,更新后

的个体被重新注入 MPA 种群,实现 MPA 与 DRL 的

双向交互与协同优化;引入 CEM 进一步优化,用

CEM 替换 MPA 中用于全局搜索的 FADs 效应机制,
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并依据进化阶段选择不同部分的种群进行梯度更

新,从而更好地平衡算法的全局探索与局部开发能

力;最后,在 Mujoco 物理引擎的 4 个连续控制任务

中进行了仿真实验。 实验结果表明:MPA-CEM-RL
在性能和稳定性方面均优于本文中的所有对比算

法。 在未来的工作中,需要对算法的时间复杂度进

行优化,并将其应用到多目标优化问题中。
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