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Surface defect detection model for welds based on lightweight YOLOv7
LI Qianghua

(School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, Jiangxi, China)

Abstract: In response to the problem of balancing computation time, accuracy, and speed in the detection model of weld surface
defects with limited computing resources, this paper proposes a lightweight model that integrates GhostNet V2 and GSConv modules
based on the YOLOvV7 model. Firstly, replacing the ELANB module with the C3GhostNet V2 module in the backbone feature
extraction network reduces the parameter and computational complexity of the convolutional layer without changing the output feature
map and channel size; Secondly, in the detection head, the original ELANN module is partially replaced with the GSELANN
module designed by GSConv convolution, reducing redundant and repetitive information, thereby reducing computational costs and
achieving lightweighting. The experimental results show that, on the basis of improving detection accuracy by 2. 9 percentage
points, the model in this paper reduces parameter count by 14. 4% and computational complexity by 16. 5%, providing strong
support for real-time detection of surface defects in welds.
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Fig. 1 Network structure of the YOLOvV7 model
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Fig. 2 Network structure of the YOLOv7-GG model
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Fig. 3 C3GhostNet V2 module structure diagram
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Fig. 4 Schematic diagram of GSConv module structure

£ YOLOvT BEA rh &R i ] GSConv , 55 1) TR B2
W B, AT S8 ARG I K% 2 T e o PO R ), A
SCREPRALTE T B B 5T GSConv LS LR AL AN
k. 1E YOLOvT By | 2 FREAF SR E 0 45 75 it &2
BRI B ARRAE , H AR AL A S5 (1 3 3
HA S, DRI 32 5 T 00 245 475 1 B8 bk of 35 A 4
i, MTERIISL h 3| GSConv AR IR/ 540, Bl
Wk DAY RN B A 15 8, NN AR T8 Bl AR, S B

Input
Conv
Conv
Conv Conv
CU” v
Conv
Concat
Conv
Output

(a) ELANN #5#

Bk, N T #E— 2 & GSConv MIAE I, A SCXF
ELANN #7545 #4 itk | 45 Hi GSELANN #idke | 3f-fift
e HE J5 B GSELANN 5% B 25 46 A6 I Sk v Jit 4R 119
ELANN B MoftRifa a9 ELANN Z5F0n1& 5 fiis
iy N\ YRR AR R T B RUR 225 — R 5 1Y GSCony
G AR E L B YR ERE S A SUbEL A AR TR
A (AR 2 T B B P RIS/ 1 B g 34
HASER, RS T SRS BT ERE

Input
GSConv
GSConv
Conv GSConv
GSConv
GSConv
Concat
Conv

Output

(b) GSELANN %5#4

B 5 witni/aR ELANN 444
Fig. 5 ELANN structure before and after improvement

2 IWESH

2.1 RBRERMRERBIEESE
FIRTBAT R T B 1 A TR A S R4

Ml SEBR IR 22 TR (TIG ) JRFEFREE TS X R AL G5 #4 1:
(N2 R AR AE A T EMGOR AR , HEoR AR AR 44 3R THT 5 4 i
HEIR 1529 5K BRFE VL e KAl &
Kl 6 frR .,



182

ERRES

(a) FfL

(b) Z& (c) 1895
6 REEREEEEF
Fig. 6 Pictures of weld surface defects
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Fig. 7 Image data enhancement
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Table 2 Experimental results of ablation experiments
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Fig. 8 YOLOVS training results
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Fig. 9 YOLOV7 training results
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Fig. 10 YOLOV7-GG training results

S A B L] YOLOVT -GG B 5 YOLOVS |
YOLOv7 HERYAH b AT 5 4 (14 A54% 26 T g5l o Az ) 44
iE. YOLOVT-GG Bl 245 5 ) S 24045 B 24 {E AH
BT YOLOVT Bk 96. 0% #2255 3 98. 9%, & 7}
2.9 A SRR AL BRBE T B EE S AT 1.3 A4
53 5 FEUR AT RS B AEEE T 6. 4 N 53 a5
IR G B - 2T RG B2 S (BT 0. 2 AN 43 05 5 il
FATE - SA0KS BE SR T 3. 6 S 40 45, B YOLOv7 -

GG BIRIAREE T YOLOvS F7Y 4 Fofb il o 170 4G DA
WA —E T,
2.6 AMERBGHMMEEEAITEE

SRy BEIE FIT B 2 R A AR R A A, A SCHE I 2
SHG LA AR — A FF T M H S Faster
R-CNN ,SSD . YOLOvS5 & YOLOv7 %52 it F A5 A4S
PRI GEAT XS S0, S 25 R L3 3, S g IRk
B, e AH RV A B RS R T, A b At
BIAE mAP $545 LIO0TF iR A my | 5o 5 S i
T IUAS B 5 25 G kR

*3 TEEHENER
Table 3 Results of different models
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